
This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly credited.

International Journal of Computing Sciences Research (ISSN print: 2546-0552; ISSN online: 2546-115X)

Vol. 8, pp. 3298-3310

doi: 10.25147/ijcsr.2017.001.1.211

https://stepacademic.net

Short Paper

POT-AVL: A Novel CPU Scheduling Algorithm based on AVL
Trees and Postorder Traversal

Don Harl C. Malabanan
College of Information Technology and Computer Science,

University of the Cordilleras, Philippines
dcmalabanan@uc-bcf.edu.ph

(corresponding author)

Mishael M. Valdez

College of Information Technology and Computer Science,

University of the Cordilleras, Philippines

mmvaldez@uc-bcf.edu.ph

Dionisio R. Tandingan Jr.

College of Engineering and Architecture,
University of the Cordilleras, Philippines

drtandingan@uc-bcf.edu.ph

Date received: May 17, 2024

Date received in revised form: July 26, 2024; July 29, 2024
Date accepted: August 17, 2024

Recommended citation:

Malabanan, D. H., Valdez, M. M., & Tandingan, D. Jr. (2024). POT-AVL: A novel CPU

scheduling algorithm based on AVL trees and postorder traversal. International
Journal of Computing Sciences Research, 8, 3298-3310.

https://doi.org/10.25147/ijcsr.2017.001.1.211

Abstract

Purpose – This study aims to offer a new perspective on the development and optimization
of CPU scheduling algorithms in the field of research utilizing the concept of an Adelson-

Velsky and Landis (AVL) tree which has not been used before in related studies which
signifies a departure from standard practices, seeking to offer fresh insights into

scheduling challenges.

Method – A novel scheduling algorithm called POT-AVL encompasses the structure of an

mailto:dcmalabanan@uc-bcf.edu.ph
mailto:mmvaldez@uc-bcf.edu.ph
mailto:drtandingan@uc-bcf.edu.ph

3299

AVL tree while using the postorder traversal to identify and select which processes shall be

chosen and executed by the scheduler. The proposed algorithm was tested against the
more common FCFS and two optimized RR algorithms, AMRR and MMRRA in terms of their

Average Turnaround Time, Average Waiting Time, and Context Switch metrics.

Results –The results show that POT-AVL consistently performs better than the other
algorithms in instances when the burst times for the processes are long burst times. POT-

AVL performs worse than the FCFS algorithm when there are long gaps between arrival
times.

Conclusion – The novel approach of integrating an AVL tree wait queue leads to an

improved efficiency in terms of searching and managing processes in the queue which may

be useful as a new path in the development and optimization of CPU scheduling algorithms.

Recommendations – The inclusion and other factors such as quantum time, and priority level,
among others, can identify the strengths and weaknesses of the proposed algorithms in
different scenarios.

Research Implications – This study exhibits more possibilities for amalgamating data

structures and CPU scheduling algorithms.

Practical Implications – This study could suggest exploring alternative balancing techniques
or adapting AVL trees to leverage hardware features efficiently.

Keywords – CPU Scheduling, novel approach, AVL, Optimization

INTRODUCTION

 The use of CPU scheduling in determining the order of processes executed in the CPU
is a topic in computer science full of unique and new advancements. The wave of studies
investigating advancing systems lends itself to the need to continually improve system

throughput and wait times by looking at different problems through a new lens

(Pemasinghe & Rajapaksha, 2022). As such, the researchers have aimed to develop a new

scheduling algorithm by looking at the problem from a different perspective.

 To offer a new perspective on the problem, the researchers utilized the concept of an
Adelson-Velsky and Landis (AVL) tree which has not been used before in related studies

(Mishra & Ofujeh Ahmed, 2020). This choice signifies a departure from standard practices,
seeking to offer fresh insights into scheduling challenges. An AVL tree is a data structure in

the form of a binary tree that can rebalance itself if the tree becomes imbalanced. There

are three common ways to traverse an AVL tree for a system to process the nodes in the
tree: inorder, preorder, and postorder. Each traversal method reads the tree in a different

3300

manner which lends itself to multiple possible uses within the domain of computer science

and beyond.

 The researchers have observed that one method in optimizing the algorithm was
selecting the order in which process to run (Dwibedy & Mohanty, 2023) which supports the

decision to recontextualize a data structure concept into CPU scheduling. Throughout this

paper, the researchers have aimed to develop a new CPU scheduling Algorithm based on
AVL trees and postorder traversal and find out whether the newly developed algorithm
was competitive against other modern algorithms.

LITERATURE REVIEW

 The development of scheduling algorithms would typically focus on optimizing the

way jobs are added to the ready queue (Jeyaprakash & M, 2021). Multiple approaches could
be taken to optimize this process such as the Adjustable Time Slice (ATS) algorithm which
was made as an improvement to the round-robin algorithm by creating multiple queues

based on multiple metrics and then assigning a different time quantum (TQ) for each queue

for a more efficient and adaptive approach (Mostafa et al., 2022). Another approach named

the VRRP developed an adaptive priority algorithm that made sure to give priority to new

processes while dynamically changing the priority of older processes based on a computed
ratio of waiting time and remaining burst time to minimize the waiting time (Singh et al.,

2015).

Multiple unique approaches attempt to solve the ever-present challenge of

discovering the most efficient approach for CPU scheduling problems. The researchers’
approach of using an AVL tree specifically as the scheduling logic of the algorithm is novel

to the point that no similar studies could be found by the researchers. The development of
the AVL self-balancing algorithm first introduced in a seminal paper by Adelson-Velsky &
Landis (1962) shows promise in the potential benefits of improving the process of CPU

scheduling as it has been used to improve various processes in other domains such as IoT

(Canli & Toklu, 2021), computer vision (Chan IV, 2021), and in embedded systems (Lázaro et
al., 2021).

 The evaluation of CPU scheduling algorithms often hinges on key performance metrics
like efficiency, throughput, turnaround time (TAT), waiting time (WT), response time, and
fairness. Various similar studies (Al-Khatib et al, 2023) have benchmarked common using

these criteria. In optimizing these algorithms, the selection of performance metrics—
primarily TAT and WT—is crucial, as these indicate the efficiency of task execution and the

delay before tasks begin execution, respectively. Additionally, the number of Context
Switches (CS) is a vital metric for assessing CPU utilization, underscoring the importance of

comprehensive performance evaluation (Al-Safar, 2021).

 The researchers have evaluated various scheduling algorithms against new ones,

3301

highlighting First Come First Served (FCFS) for its prominence in optimizing legacy systems.

Despite its challenges, such as potential system slowdowns under heavy workloads leading
to increased process idle times and CPU execution delays, FCFS remains a focal point of the

study (Vayadande et al., 2023). Notably, some studies (Panda et al., 2023) have observed
FCFS's advantages in mitigating such issues in specific contexts like cloud computing.

 The Round Robin (RR) algorithm's variable performance has also spurred research

into its optimization. Efforts range from modifying the static quantum time formula
(Banerjee et al., 2012; Mora et al, 2020; Sakshi et al., 2022) to incorporating features like
multiple queues and dynamic quantum times (Biswas et al, 2023; Manuel et al., 2019;

Niranjan & Thenmozhi, 2023). Notably, the Average Max Round Robin (AMRR) and Modified
Median Round Robin Algorithm (MMRRA) enhance RR's stability, positioning them as

competitive alternatives. AMRR dynamically adjusts the Time Quantum (TQ) based on

average and maximum burst times in the queue, while MMRRA's TQ varies according to
the median and highest burst times, calculated using a specific formula.

METHODOLOGY

 The following section introduces how the POT-AVL algorithm works using a sample

test case. The step-by-step algorithm with its corresponding flowchart outputs the
calculated ATAT and AWT of the processes as well as the Gantt chart showcasing how each

process is executed as per their AT and BT. The comparison to the other scheduling
algorithms will be done using 5 different test cases which have different inputs with varying

BTs and ATs.

A. POT-AVL Algorithm and Flowchart

Let Q be the ready queue. Let A be the AVL queue.

1) When processes arrive, add them to A using a First-Come-First-Served algorithm.

2) If multiple processes arrive simultaneously, add them in the order of their Process

IDs (PID), with the lower PID being added first.

3) After insertion, allow the AVL tree to self-balance

4) Use Postorder traversal on A. The first process encountered during this traversal is
the one selected for execution. This process is then moved to Q.

5) Execute the full burst time of the current process at Q

6) During execution, if new processes arrive, repeat Step 2 to add and manage these
new arrivals in

7) After a process is executed, check if there are any remaining processes to be
executed

8) If all processes are executed, then EXIT
9) else, go to step 2

3302

Figure 1. POT-AVL Flowchart.

Figure 2. AVL Queue Self-Balance Flowchart.

 Table 1. Sample Processes

PID BT AT TAT WT

Process 1 8 0 8 0

Process 2 12 2 56 44
Process 3 6 4 10 4

Process 4 10 7 24 14

Process 5 15 10 36 21
Process 6 7 13 8 1
Average 23.67 14

3303

Figure 3. Gantt Chart for Sample Test Case.

 The POT-AVL algorithm proceeds as follows based step-by-step procedure shown in
Figure 1 and Figure 2 using the sample processes provided in Table 1. Process P1 arrived first

with an arrival time of 0. Since no other processes arrived at the same arrival time, P1 goes

to the AVL queue and proceeds with the Postorder traversal. P1 then goes to the ready
queue and executes its burst time of 8 units. During the non-preemptive execution of P1,

the processes P2, P3, and P4 arrive by the 2nd, 4th, and 7th-time units respectively.
Processes P2, P3, and P4 proceed to the existing AVL queue (which is currently empty) and
proceed to self-balance its nodes.

The Postorder traversal outputs P3 as the first process to be read, therefore, P3

proceeds to the ready queue. P3 executes for the burst time of 6 units, during which, P5
and P6 arrive at the 10th and 13th time unit respectively. P5 and P6 proceed to the existing

AVL queue and it self-balances the nodes. The postorder traversal outputs P6 as the next
process to proceed to the ready queue which executes for 7 units. The AVL queue then self-

balances itself and keeps outputting the next processes which are P4, P5, and P2

respectively. The CT, TAT, and WT were then calculated which also gives the output of 23.67
units for the Average TAT (ATAT) and 14 units for the Average WT (AWT). The final Gantt

chart of the processes can be seen in Figure 3.

 The POT-AVL algorithm was benchmarked against FCFS and two optimized RR
variations, AMRR and MMRRA, due to FCFS's prevalence in scheduling algorithm research

and the latter's innovative TQ computations. This comparison ensures that POT-AVL is

evaluated alongside both traditional and contemporary counterparts.

RESULTS

 The performance metrics chosen to identify the viability of well-performing

scheduling were the ATAT and the AWT of all the processes executed to observe the
scheduling algorithms in terms of efficiency of task execution and reduction of wasted time

respectively. The identified performance metrics were used as the basis for the viability of
the test cases.

 All experimental test cases performed in this study follow the assumptions listed in
the scope and delimitations. The test cases are grouped by their corresponding length of
burst times and the length of gaps in the arrival times. The performance metrics, namely

average turnaround time and average waiting time (Manuel et al., 2019) of the FCFS

algorithm, the AMRR algorithm, and the MMRRA (Sakshi et al., 2022) algorithm were

compared to the POT-AVL algorithm (Table 2).

3304

1) Test Case 1: The researchers assumed 5 processes with short burst times and short

arrival times.

2) Test Case 2: The researchers assumed 5 different processes with long burst times and
short arrival times.

3) Test Case 3: The researchers assumed 5 processes with short burst times and long

arrival times.
4) Test Case 4: The researchers assumed 5 different processes with long burst times and

long arrival times.
5) Test Case 5: The researchers assumed 5 different processes with randomized long burst

times and arrival times.

Table 2. POT-AVL Test Cases 1-5

Test Case PID BT AT TAT WT

 Process 1 4 3 10 6

 Process 2 6 5 14 8

Test Case 1
Process 3 2 1 8 6

Process 4 7 0 7 0
 Process 5 5 4 20 15
 Average 11.8 7

 Process 1 24 2 24 0
 Process 2 42 4 111 69

Test Case 2
Process 3 19 8 37 18

Process 4 32 3 144 112
 Process 5 28 7 66 38
 Average 76.4 47.4

 Process 1 12 5 12 0

 Process 2 4 11 10 6

Test Case 3
Process 3 7 41 7 0

Process 4 9 27 9 0
 Process 5 5 19 7 2
 Average 9 1.6

 Process 1 44 0 44 0
 Process 2 27 65 38 11

Test Case 4
Process 3 51 82 72 21

Process 4 32 30 46 14
 Process 5 48 17 185 137
 Average 77 36.6

 Process 1 18 7 62 44
 Process 2 33 0 33 0

Test Case 5
Process 3 17 17 69 52

Process 4 13 23 23 10
 Process 5 5 10 41 36
 Average 45.6 45.6

3305

 For test case 1, the POT-AVL algorithm performed better than AMRR and the MMRRA
with a positive difference of 2.4 units for the ATAT and AWT metrics. However, POT-

AVL performed slightly worse compared to FCFS with only a negative difference of -0.2
units. The context switches are relatively similar with POT-AVL and FCFS both having 4 and

AMRR and MMRRA having 5. For test case 2, when having long burst times with short

arrival times, the POT-AVL algorithm performed more efficiently than all other scheduling
systems for comparison with both the ATAT and AWT metrics being significantly lower.

Similarly, with test case 1, the context switches are relatively similar with POT-AVL and
FCFS both having 4 and AMRR and MMRRA having 5. For test case 3, with the processes

having shorter burst times and a longer gap for arrival times, the POT-AVL performed

slightly better compared to AMRR and MMRRA with a positive difference of 0.2 units and
0.4 units respectively. However, the algorithm had the same performance as FCFS with

both having an ATAT value of 9 units and an AWT value of 1.6 units. The context switches
have a significant difference with POT-AVL and FCFS both having 4 and AMRR and MMRRA

having 7.

Table 3. Algorithm Comparison for Test Cases 1-5

Test Case Algorithm ATAT ART CS

 POT-AVL 11.8 7 4

Test Case 1
FCFS 11.6 6.8 4

AMRR 14.2 9.4 5
 MMRRAA 14.2 9.4 5

 POT-AVL 76.4 47.4 4

Test Case 2
FCFS 87 58 4

AMRR 94 65 5
 MMRRAA 93.2 64 5

 POT-AVL 9 1.6 4

Test Case 3
FCFS 9 1.6 4

AMRR 9.4 2 7
 MMRRAA 9.2 1.8 7

 POT-AVL 45.6 28.4 4

Test Case 4
FCFS 48.4 31.2 4

AMRR 52.6 35.4 6
 MMRRAA 51.8 34.6 6

 POT-AVL 77 36.6 4

Test Case 5 FCFS 83.8 43.4 4
 AMRR 104 63.6 5
 MMRRAA 105 64.2 5

For test case 4, similar to test case 2, having processes with long burst times and arrival
times with long gaps results in the POT-AVL algorithm performing more efficiently than all

3306

other scheduling systems for comparison with both the ATAT and AWT metrics being
significantly lower. The context switches have a significant difference with POT-AVL and
FCFS both having 4 and AMRR and MMRRA having 6. Lastly, test case 5 shows that POT-AVL
performed better than the other algorithms during a randomized set of BTs and ATs. The
context switches are relatively similar with POT-AVL and FCFS both having 4 and AMRR and
MMRRA having 5.

DISCUSSION

The test cases reveal that the newly developed POT-AVL scheduling algorithm can
contend against other common and contemporary scheduling algorithms such as FCFS,
AMRR, and MMRRA. The POT-AVL algorithm consistently performs better than the AMRR
and MMRRA scheduling algorithms in terms of Average Turnaround Time (ATAT) and
Average Waiting Time (AWT), especially in scenarios where the processes have long burst
times, as seen in test case 2 and test case 4. This indicates that the POT-AVL algorithm is
highly effective in environments with heavy computational loads, ensuring minimal delays
and efficient processing. In scenarios where the processes have long gaps in their arrival
times, the FCFS scheduling algorithm stands a chance to be more efficient compared to the
POT-AVL algorithm in terms of ATAT and AWT, as seen in test case 1 and test case 3. This
suggests that the POT-AVL algorithm might not handle idle times between processes as
effectively as FCFS, leading to increased waiting times in such scenarios.

The strengths of the POT-AVL scheduling algorithm are its efficiency with long burst

times, competitive performance against some contemporary algorithms, and its consistency
in providing reliable performance across different test cases which indicates stability in
differing conditions. This performance aligns with previous studies that have utilized AVL to
improve CPU computation efficiency (Lazaro et al., 2021). Its weaknesses lay in its handling
of idle times and larger space complexity which leads to lesser efficiency in handling long-
gapped scenarios and in managing memory respectively.

CONCLUSIONS AND RECOMMENDATIONS

 Testing the novel POT-AVL algorithm against FCFS, AMRR, and MMRRA with the
selected performance metrics revealed a few key aspects where the newly developed

algorithm excels. POT-AVL consistently performed better than others at tasks with long
burst times. FCFS lightly outperforms POT-AVL in cases with shorter burst times. This shows
the ability of POT-AVL to be optimized in tasks with heavier loads. POT-AVL also works better

in terms of switch cases as it performs with the least possible switch cases for every Gantt
chart with the formula no. of switch cases = pn where pn is the number of processes.

The researchers recommend the inclusion and other factors such as quantum time,

and priority level, among others, can identify the strengths and weaknesses of the
proposed algorithms in different scenarios. Other possible recommendations include

having different novel approaches as a comparison for test cases to indicate the level of

3307

progression POT-AVL has to offer in terms of CPU utilization.

IMPLICATIONS

The innovative development of the POT-AVL scheduling algorithm impacts multiple

fields of computer science in terms of OS management. These include improved efficiency

as self-balancing binary search trees provide efficient searching and retrieval operations.
Integrating an AVL tree into the wait queue could lead to improved efficiency in terms of

searching for and managing processes in the queue. This could result in faster scheduling
decisions and overall system performance. Enhanced scalability is also a significant factor

for impact as AVL trees are known for maintaining a balanced structure, which helps in
maintaining a logarithmic height. This property can enhance the scalability of the

scheduling algorithm, making it suitable for systems with many processes. Other impacts

include the optimization of the utilization of system resources, ensuring that processes are

scheduled in a way that minimizes resource contention and maximizes throughput and

more efficient handling of processes in terms of priority or other scheduling criteria which
could potentially reduce waiting times for processes, improving the responsiveness of the
system. This study exhibits more possibilities for the amalgamation of data structures and

CPU scheduling algorithms.

ACKNOWLEDGEMENT

 The researchers would like to acknowledge the assistance and funding given by the
University of the Cordilleras, Baguio City.

FUNDING

 This study is funded by the University of the Cordilleras, Baguio City.

DECLARATIONS

Conflict of Interest

The researchers declare no conflict of interest in this study.

Informed Consent

Not applicable due to the novelty approach.

Ethics Approval

 Not applicable due to lack of ethical issues.

3308

REFERENCES

Adelson-Velsky, E. M., & Landis, E. M. (1962). An algorithm for the organization of
information. Soviet Math.

Al-Khatib, R. M., Al-Khateeb, A., Al-Daom, E., Al-Dagamseh, I. T., Tawalbeh, A., & Abualigah,
L. (2023). A new enhanced IGBTQ-based model for CPU scheduling. Applied and
Computational Engineering, 8(1), 411–417. doi:10.54254/2755- 2721/8/20230207

Al-Safar, A. (2021). Hybrid CPU scheduling algorithm SJF-RR in static set of processes.
Journal of Al-Rafidain University College for Sciences, (1), 36–60.
https://doi.org/10.55562/jrucs.v29i1.377

Banerjee, P., Banerjee, P., & Dhal, S. S. (2012). Comparative performance Analysis of
Average Max Round Robin Scheduling Algorithm (AMRR) using dynamic time
quantum with round robin scheduling algorithm using static time quantum.
International Journal of Innovative Technology and Exploring Engineering (IJITEE), 1(3),
56–62.

Biswas, D., Samsuddoha, Md., Al Asif, Md. R., & Ahmed, Md. M. (2023). Optimized round
robin scheduling algorithm using dynamic time quantum approach in cloud
computing environment. International Journal of Intelligent Systems and Applications,
15(1), 22–34. https://doi.org/10.5815/ijisa.2023.01.03

Canli, H., & Toklu, S. (2022). AVL-based settlement algorithm and reservation system for
smart parking systems in IoT-based smart cities. The International Arab Journal of
Information Technology, 19(5), 793-801. https://doi.org/10.34028/iajit/19/5/11

Chan, C. VI (2021). Computer vision: Object tracking using self-balancing tree for optimized
data processing (unpublished manuscript). California State University, Fullerton,
USA. https://doi.org/10.5281/zenodo.5765023

Dwibedy, D., & Mohanty, R. (2023). A note on hardness of multiprocessor scheduling with
scheduling solution space tree. Computer Science, 24(1), 53-74.
https://doi.org/10.7494/csci.2023.24.1.4656

Jeyaprakash, T., & Sambath, M. (2021). Performance analysis of CPU scheduling algorithms
– a problem-solving approach. International Journal of Science and Management
Studies (IJSMS), 411–416. https://doi.org/10.51386/25815946/ijsms-v4i4p138

Lázaro, J., Bidarte, U., Muguira, L., Cuadrado, C., & Jiménez, J. (2021). Fast and efficient
address search in system-on-a-programmable-chip using binary trees. Computers &
Electrical Engineering, 96, Article ID 107403.
https://doi.org/10.1016/j.compeleceng.2021.107403

Manuel, J. I., Baquirin, R. B., Guevara, K. S., & Tandingan, D. R. (2019). Fittest job first
dynamic round robin (FJFDRR) scheduling algorithm using dual queue and arrival
time factor: A Comparison. IOP Conference Series: Materials Science and Engineering,
482, Article 012046. https://doi.org/10.1088/1757-899x/482/1/012046

Mishra, A., & Ofujeh Ahmed, A. (2020). Simulation of CPU scheduling algorithms using
Poisson distribution. International Journal of Mathematical Sciences and Computing,
6(2), 71–78. https://doi.org/10.5815/ijmsc.2020.02.04

Mora, H., Abdullahi, S. E., & Junaidu, S. B. (2017, November). Modified median round-robin
algorithm (MMRRA). In Proceedings of the 13th International Conference on
Electronics, Computer and Computation (ICECCO) (pp. 1-7). IEEE.

3309

https://doi.org/10.1109/icecco.2017.8333325
Mostafa, M. S., Ahmed Idris, S., & Kaur, M. (2022). ATS: A novel time-sharing CPU

scheduling algorithm based on features similarities. Computers, Materials &
Continua, 70(3), 6271–6288.

Niranjan, P., & Thenmozhi, M. (2023, December). Priority-induced round-robin scheduling
algorithm with dynamic time quantum for cloud computing environment. In
Proceedings of the 2023 Second International Conference on Advances in
Computational Intelligence and Communication (ICACIC) (pp. 1–5). IEEE.
https://doi.org/10.1109/icacic59454.2023.10435310

Panda, S. K., Dhiman, A., & Bhuriya, P. (2023, July). Efficient real-time task-based scheduling
algorithms for IOT-fog-cloud architecture. In Proceedings of the 2023 14th
International Conference on Computing Communication and Networking Technologies
(ICCCNT) (pp. 1-7). IEEE. https://doi.org/10.1109/icccnt56998.2023.10306689

Pemasinghe, S., & Rajapaksha, S. (2022, September). Comparison of CPU scheduling
algorithms: FCFS, SJF, SRTF, round robin, priority-based, and multilevel queuing. In
Proceedings of the 2022 IEEE 10th Region 10 Humanitarian Technology Conference (R10-
HTC) (pp. 318–313). IEEE. https://doi.org/10.1109/r10-htc54060.2022.9929533

Sakshi, Sharma, C., Sharma, S., Kautish, S., A. M. Alsallami, S., Khalil, E. M., & Wagdy
Mohamed, A. (2022). A new median-average round robin scheduling algorithm: An
optimal approach for reducing turnaround and waiting time. Alexandria Engineering
Journal, 61(12), 10527–10538. https://doi.org/10.1016/j.aej.2022.04.006

Singh, P., Pandey, A., & Mekonnen, A. (2015). Varying response ratio priority: A preemptive
CPU scheduling algorithm (VRRP). Journal of Computer and Communications, 3(04),
40–51. https://doi.org/10.4236/jcc.2015.34005

Vayadande, K., Sheth, P., Pawal, D., Pathak, A., Paralkar, K., & Patil, S. (2023, January).
Simulation of CPU scheduling algorithms for efficient execution of processes. In
Proceedings of the 2023 International Conference for Advancement in Technology
(ICONAT) (pp. 1–6). IEEE. https://doi.org/10.1109/iconat57137.2023.10080113

Author’s Biography

 Don Harl Malabanan is an instructor at the University of the Cordilleras College of
Information Technology and Computer Science. He holds a Bachelor’s Degree in Information

Technology from the same institution. His academic focus includes Machine Learning, Data

Structures, and Programming. Currently, he is pursuing a Master of Science in Computer
Science, further enhancing his expertise in these areas.

 Mishael M. Valdez is an instructor at the University of the Cordilleras College of

Information Technology and Computer Science. He holds a Bachelor of Science in Computer
Science from the same institution. His research and academic interests include Machine
Learning, Natural Language Processing, and Data Science. As an instructor, he utilizes his

knowledge and skills to teach Computer Science and Multimedia Arts courses. Currently, he
is pursuing his Master of Science in Computer Science to enhance his knowledge and

expertise in this field of academics.

3310

Dionisio Tandingan Jr. is an instructor at the University of the Cordilleras College of

Engineering and Architecture. He holds a Bachelor of Science in Computer Engineering,
Master of Computer Science, and Master of Arts in Education, Major in Educational

Management.

