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Abstract  
  
Purpose – Aiming at the flexible job shop scheduling problem (FJSP), a multi-objective 
scheduling model with the maximum completion time and the minimum total processing 
energy consumption was constructed as the optimization objectives.  
 
Method – To optimize the performance of the genetic algorithm, a diversified population 
strategy was adopted, combining elite retention and a random roulette wheel selection 
mechanism to screen and retain offspring with excellent performance carefully At the 
operational level of the algorithm, an efficient single-point crossover strategy was 
adopted for the process coding part to promote the combination and transmission of 
excellent characteristics. For the machine allocation part, a flexible random crossover 
method was introduced to increase the diversity of solutions. To explore new solution 
spaces and avoid premature convergence, a single-point mutation mutation strategy 
based on minimum machine energy consumption was designed.  
 

Results – Simulated the workshop manufacturing of six machines and six job positions 
in a company. Compared to the original scheme, the optimized one reduced the 
production interval by 19.67%, proving its effectiveness. 
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Conclusion – There are other important objectives in actual production, and dual objective 
optimization may not fully reflect the complexity and diversity of the production system. 
In addition to dual objective optimization, considering multi-objective optimization 
methods may better capture the authenticity of the production system comprehensively. 
Recommendations – By optimizing production scheduling, overall production efficiency 
can be improved and profit margins can be increased. 
 

Practical Implications – This study provides a solution to improve production efficiency 
and reduce energy consumption in manufacturing environments. The proposed method 
has been validated through enterprise cases, demonstrating its effectiveness in 
optimizing maximum completion time and total energy consumption. Implementing this 
algorithm can improve profit margins and promote more sustainable production 
practices, aligning with the goals of modern manufacturing. 
 
Keywords – FJSP, genetic algorithm, multi-objective, multiple populations 
 

 

INTRODUCTION  
 

With the continuous expansion of production scale, effectively arranging various 
resources has become the main task of digitization in the current manufacturing industry. 
Production scheduling is the core of manufacturing planning, and in-depth research on it 
is beneficial for energy conservation, emission reduction, and efficiency improvement, 
thereby accelerating the transformation and upgrading of the manufacturing industry. 
The flexible job shop scheduling problem (FJSP) is a further extension of the traditional 
job shop scheduling problem (JSP), which has been proven to be an NP-hard problem. 
This problem allows each process to be processed on any available machine. In addition 
to determining the sequence of process processing, it is also necessary to determine the 
corresponding relationship between specific processes and machines, making it more 
complex compared to JSP. However, in actual production processes, there is a demand 
for multiple tasks to be carried out simultaneously and to be arranged in a reasonable 
order to improve production efficiency and resource utilization. Due to the 
interdependence between different tasks and conflicts between multiple optimization 
objectives, such as minimizing production time, maximizing profits, minimizing 
equipment idle, etc., solving the multi-objective job shop scheduling optimization 
problem becomes very complex. 
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LITERATURE REVIEW 
 

Multi-objective Flexible Job-shop Scheduling 
  

In recent years, with the introduction of various algorithms and optimization 
technologies, the field of multi-objective FJSP has made significant progress. Xia and Wu 
(2005) proposed a hybrid optimization method using simulated annealing (SA) as a local 
search algorithm and demonstrated its effectiveness for large-scale FJSP. Moslehi and 
Mahnam (2011) developed a Paretobased method that combines particle swarm 
optimization and local search, demonstrating competitiveness in solving multi-objective 
FJSP problems. Li et al. (2011) proposed a hybrid Paretobased discrete artificial bee colony 
algorithm for FJSP and added a fast Pareto set update function. Piroozfard et al. (2018) 
introduced an improved multi-objective genetic algorithm for minimizing the total carbon 
footprint and total delay working standard in FJSP. Wang (2020) proposed a hybrid multi-
objective evolutionary algorithm based on decomposition to solve the FJSP problem 
under the time-sharing price, aiming at minimizing the completion time and the total 
power cost simultaneously. Liang et al. (2021) proposed an improved adaptive non-
dominated sorting genetic algorithm, which has an elite strategy and is used to solve the 
multi-objective FJSP problem, and its effectiveness was proved by simulation results. Luo 
et al. (2021) explored the dynamic multi-objective scheduling of flexible job shops through 
deep reinforcement learning, emphasizing the application of advanced learning 
techniques in scheduling optimization. Wei et al. (2023) proposed a multi-objective 
migratory bird optimization algorithm based on game theory for dynamic FJSP problems, 
demonstrating the integration of natural heuristic algorithms and strategic decision-
making concepts. Du et al. (2023) proposed a knowledge-based reinforcement learning 
and distribution estimation algorithm for FJSP, which combines deep Q networks with 
domain knowledge to effectively improve scheduling solutions. Shi and Xiong (2024) 
proposed a multi-objective job shop scheduling problem considering total delay 
(MOJSSP/O) and developed an enhanced non-dominated sorting genetic algorithm II 
(ENSGA-II) to solve the problem. 

 

Genetic Algorithm 
 
Genetic algorithms have been widely used in various fields for optimization and problem-
solving purposes. Chapman et al. (2021) stated that the genetic algorithm is a search and 
optimization technique based on the theory of natural selection, commonly applied to 
various complex problems. Mantawy et al. (1999) presented a new algorithm that 
integrates genetic algorithms, tabu search, and simulated annealing to solve the unit 
commitment problem. The core of this algorithm is genetic algorithms, with tabu search 
used for population generation and simulated annealing employed to accelerate 
convergence. Slowik and Kwasnicka (2020) presented genetic algorithms as one of the 
evolutionary algorithms that can be implemented in any programming language. Yin et al. 
(2024) proposed an adaptive genetic algorithm that considers the overall evolutionary 
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state of the population. By dynamically adjusting the crossover and mutation probabilities, 
the algorithm effectively improves the global search ability and convergence efficiency of 
the genetic algorithm. 
 

Genetic Algorithm for Job Shop Scheduling 
 

Gu et al. (2010) proposed a competitive coevolutionary quantum genetic algorithm for 
stochastic job shop scheduling problems, aiming to minimize the expected completion 
time. This algorithm utilizes multiple swarm methods and quantum theory concepts to 
improve diversity and convergence speed. Xing et al. (2011) also proposed a multi-
population interactive collaborative evolutionary algorithm for flexible job shop 
scheduling problems, which combines ant colony optimization and genetic algorithm to 
achieve independent evolution of the population. Fakhrzad et al. (2013) proposed a multi-
objective job shop job scheduling method using a hybrid genetic algorithm. This method 
combines advantage relationship and weighted aggregation fitness calculation, 
introducing fitness-based advantage relationship and weighted aggregation in genetic 
algorithm and local search, respectively. This method effectively improves scheduling 
efficiency and has become an important progress in this field. Jiang and Le (2014) focused 
on the multi-objective flexible job shop scheduling problem considering energy 
consumption and developed an improved non-dominated sorting genetic algorithm. Tan 
et al. (2015) used a multi-objective evolutionary algorithm for job shop scheduling, 
specifically, an improved micro genetic algorithm based on the Pareto optimality principle 
was adopted. X. Zhang et al. (2020) proposed a hierarchical multi-strategy genetic 
algorithm based on non-dominated sorting for optimizing energy efficiency in integrated 
process planning and scheduling. Xie et al. (2023) proposed the Hybrid Genetic Taboo 
Search Algorithm (HGTSA), which effectively combines global capabilities (GA) and local 
capabilities (TS). To evaluate HGTSA, it was compared with four state-of-the-art 
algorithms. The experimental results indicate that it outperforms these comparisons in 
terms of solution quality and computational efficiency. Reijnen et al. (2023) proposed an 
automated deep reinforcement learning (DRL) method specifically aimed at online 
control of multiple objectives. When applying the genetic algorithm (GA) to the FJSP for 
testing, the results indicated that DEMOCA's performance was comparable to that of the 
grid search, while it significantly reduced the required training cost. Momenikorbekandi 
and Abbod (2023) devised a novel hybrid Parthenogenetic Algorithm (NMHPGA) to 
optimize the flexible single- and multi-machine shop furnace process. The comparative 
results demonstrate that NMHPGA achieves a superior objective function value at a faster 
rate. 

 

Energy consumption for job shop Scheduling 
 
Tang and Dai (2015) proposed an energy-saving method to minimize energy 

consumption in the extended job shop scheduling problem, with a focus on modifying 
the scheduling of machines working at different speeds in the job shop. Lei et al. (2018) 

https://www.paperdigest.org/paper/?paper_id=pubmed-29994437
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developed a two-phase meta-heuristic for multiobjective flexible job shop scheduling 
with a total energy consumption threshold. Yüksel et al. (2020) solved an energy-saving 
dual objective permutation flow shop scheduling problem to minimize total delays and 
energy consumption, emphasizing the necessity of sustainable production practices. Zuo 
et al. (2023) studied an assembly mixed flow shop scheduling problem with energy 
consumption and proposed an artificial bee colony optimization algorithm based on 
population diversity. Yu et al. (2024) proposed a co-evolutionary algorithm based on deep 
Q-learning networks to solve the NP-hard problem of minimizing total energy 
consumption (TEC) and makespan. An efficient heuristic method can reduce TEC. 

 
According to the current research status of FJSP by scholars both at home and abroad, 

several issues have been identified: (1) The optimization algorithm used has average 
optimization ability, mainly due to the algorithm's long response time, failure to consider 
the initial population screening situation, easy entry into local optimal, and the inability to 
effectively dynamically adjust key parameters, resulting in solution efficiency and quality 
that cannot meet production requirements; (2) The optimization objectives are often too 
narrow, frequently focusing only on minimizing the maximum completion time, without 
adequately reflecting the actual production conditions of the job shop. Therefore, this 
article establishes a mathematical model aimed at minimizing both maximum completion 
time and energy consumption and proposes an improved algorithm. 

 

METHODOLOGY 
 

Problem Description and Mathematical Modeling 
 

FJSP can be described as a machining system with M machines that require 
processing N jobs, where the number of processes included in job k is not fixed. For the 
convenience of expressing FJSP using mathematical models, Table 1 provides definitions 
for the parameters. 

 
Assuming that the job is not allowed to be interrupted during the processing, the 

machine remains in a standby state at time zero. It is stipulated that the processing 
process needs to meet the following constraint relationships: 

1) There is a sequential constraint relationship between the processes of the same job. 
2) Each machine can process any process, but each machine can only process one 

process at a time. 
3) The job can only be processed on one machine at a time, and the processing status 

cannot be interrupted. 
4) After the current process is completed, the transportation time consumed during 

the process is not calculated. 
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Table 1. Definition of relevant parameters 

Parameter Definition 
M Number of machines 
N Quantity of jobs 
i Job Number 
j Operation sequence  
k Machine No 

Oij The j-th process of job i 
tijk The machining time of the j-th process of job i on machine k 
Sijk The j-th process of job i starts at the time of machine k 
Fijk The completion time of the j-th process of job i on machine k 
Ci Completion time of job i 

Cmax Makespan 
E Total energy consumption of machine processing 

eijk 
The machining energy consumption of the j-th process of job i 

on machine k 

yijk 
Can machine k process the jth step of the job;iyijk=1, Yes; yijk=0, 

No 

α 
The weight of the maximum completion time in the scheduling 

plan 

β 
The weight of machine processing energy consumption in the 

scheduling plan 

 
This paper aims to establish a multi-objective FJSP model. The objective function is to 

minimize the maximum completion time and energy consumption. The scheduling model 
is as follows: 
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The processing of the objective function, weighted: 
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Equation (1) represents minimizing the maximum completion time; Equation (2) 
represents minimizing processing energy consumption; Equation (3) represents the 
sequential constraint relationship of the same job process; The completion time of any 
process must meet the constraint of equation (4); Equation (5) represents that the 
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processing time of any process must be greater than zero; Equation (6) indicates that all 
jobs need to start processing at time 0; Equation (7) is the objective function. 

 

Design of Improved Genetic Algorithm 
 
In the research on the FJSP problem, the traditional genetic algorithm has a slow 

convergence speed and is prone to premature convergence. This article focuses on the 
scheduling problem of flexible job shops and proposes improvements to the genetic 
algorithm. The improved algorithm flowchart is shown in Figure 1, and the specific steps 
are as follows: 

 

Step 1: Set relevant parameters and randomly generate multiple initial populations. 
Step 2: Encoding and Decoding. 
Step 3: Adopt elite retention and random roulette strategies to select outstanding 

individuals. 
Step 4: Calculate the individual fitness values for the population. 
Step 5: Perform single-point crossover on the selected parent process section and 

random crossover on the machine section. 
Step 6: Apply single point mutation with minimum machine energy consumption to 

the selected parent machine portion. 
Step 7: Determine whether the termination condition has been met. If the maximum 

number of iterations or the stopping condition has been reached, terminate the iteration 
process. Otherwise, return to step four. 

Step 8: Output the results. 
 

1. Initialization 
 
In the framework of evolutionary algorithms, the importance of population 

initialization as the starting step is self-evident, as it is directly related to the efficiency 
and effectiveness of genetic algorithms in solving complex problems. The complexity of 
FJSP is not only reflected in the need to allocate the most suitable machine for each task 
but also in the reasonable arrangement of task sequences, namely process sorting. 
Currently, most studies tend to adopt a random initialization strategy to construct the 
initial population. While this approach is simple and feasible, it often leads to uneven 
quality of the initial solution set and uneven workload distribution among machines. This 
will cause the algorithm may need to explore better solutions by increasing the number 
of iterations or expanding the population size, which significantly increases the time cost 
of the entire optimization process. According to Kacem et al. (2002), this can lead to a 
substantial increase in the overall time cost of the optimization process. 

 
In multi-population algorithms, three initial populations are randomly generated first, 

with the size of each population defined independently. The three populations undergo 
independent evolutionary operations. Due to the randomness of genetic evolution, the 
three populations may have different results throughout the evolutionary process, but 
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they can provide valuable insights for determining the optimal solution. G. Zhang et al. 
(2020) discussed the initial population initialization strategy and found that three distinct 
types of initial populations can effectively optimize the workload allocation of each 
selected machine in the initial solution, thereby ensuring maximum machine utilization 
and minimizing the maximum completion time. 

 

Figure 1. Flow chart of the improved genetic algorithm. 
 

2. Encoding and Decoding 
 
Transforming the solution of the scheduling problem into a chromosome solution 

capable of genetic operations is called encoding, which is the key to genetic algorithms. 
This article employs segmented encoding, first to encode the machines to determine the 
processing machine for each process, and then to encode the processes to determine the 
order of processing on each machine. Figure 2 shows an example of encoding from Table 
2, which represents the solution to the optimization problem. If encoded as 13231 12121. So 

the processing machines corresponding to the steps O11 → O21 → O12 → O22 → O13 are 

M1 → M3 → M2 → M2 → M1. 
 
 



 

3557 

 

Table 2. Processing Time Table of an Instance of FJSP 

Job Operations M1 M2 M3 

J1 
O11 2 - 3 
O12 3 2 2 
O13 - 2 2 

J2 
O21 3 3 3 
O22 3 4 - 

 

 

FIGURE 2.  Chromosome coding scheme. 

3. Fitness evaluation 
 
The fitness function is a method for measuring individual quality, screening strategies, 

and identifying high-quality individuals in a population. It is typically calculated based on 
the reciprocal of the objective function value. In genetic algorithms, the role of the fitness 
function is particularly crucial, as it can quantify an individual's adaptability and serve as 
the basis for selection and evolution. By evaluating fitness, genetic algorithms can 
optimize the search process, and retain and cultivate outstanding individuals in the 
population. The fitness function is: 

( ) (8)      
1

)(
max EC

xffit
+

=


 

In the formula: fit (f (x)) is the fitness value; Cmax is the maximum completion time; E 
is the total load of machine processing; α. β is the weight coefficient. 

 

4. Selection 
 
To develop genetic algorithms in better and more advantageous directions in the 

early stages of iteration, selection operations are used to select outstanding individuals 
from the population. In our method, the criteria for selecting chromosomes to be 
included in the mating pool can be chosen from two well-known selection methods in 
genetic algorithm literature: tournament selection and roulette wheel selection, as 
shown in Figure 3. 
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Figure 3. Tournament and roulette wheel code. 
 

5. Crossover 
 

The global search capability of genetic algorithms largely depends on the crossover 
operator. In traditional genetic algorithms, most crossover operators use two parents to 
generate offspring, which is a simple method but prone to convergence too quickly. This 
article focuses on a random selection of chromosome parts, with specific codes shown in 
Figure 4. 
 

6. Mutation  
 
In the field of traditional genetic algorithms, a common approach is to use a fixed 

mutation probability for operation. However, this approach may trap the algorithm in 
local optima, making it difficult to find a better solution. To solve this problem, the 
machine part can adopt a single-point gene mutation strategy that minimizes machine 
energy consumption, in order to search for the optimal solution more accurately.  
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Figure 4. MS and OS crossover code. 

 

SIMULATION RESULTS AND ANALYSIS 
 
To verify the effectiveness of the algorithm designed in this paper, the job shop 

manufacturing of an enterprise is investigated. The process of processing a product in 
this enterprise can be simplified into the FJSP problem of six machines processing six jobs. 
The constraints for processing jobs and machines are shown in Table 3. The first column 
in the table represents six jobs, the second column represents the process of each job, 
and columns 3 to 8 represent the machines available for processing, along with their 
corresponding processing times and energy consumption. 

 
The experimental parameters are set as follows: population size of 500, crossover 

probability of 0.85, mutation probability of 0.06, and maximum iteration count of 300. 
The test results under different weight combinations are shown in Table 4. 
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Table 3. Data of FJSP 

Job Operations 
Processing time/Unit time processing energy consumption 

M1 M2 M3 M4 M5 M6 

J1 

O11 10/3 15/2.5 - 14/2.7 - 14/1.5 
O12 - 6/3 4/2.1 16/2.5 15/3 - 
O13 - 5/2.4 - - 16/2.5 8/1.7 
O14 12/2 - 13/2 13/2 - - 
O15 6/3.1 6/3.1 8/1.5 8/2 4/2.1 9/1.4 
O16 - - 16/1.8 - 13/2 16/1.6 

J2 
O21 15/2.5 - 6/1 16.5/2.2 11/2.5 - 
O22 - 15/2 10/1.5 7/2.1 - 12/1.5 
O23 5/2.3 - 16/1.8 10/2.3 14/2.3 - 

J3 

O31 14/2.9 15/2.7 6/1.7 5/2.8 4/3.1 - 
O32 - 5/2 6/2 - 16/2.2 - 
O33 5/2.8 8/2.3 - 11/2.9 - 15/2 
O34 - 6/2.5 17/2.1 14/2.5 12/2 - 
O35 17/2.5 - 14/2.4 7/2 7/2.8 11/2.1 

J4 

O41 20/3 - 19/2 13/2.5 15/2.3 - 
O42 - 10/2.5 7/1 14/2.8 7/3 15/2 
O43 4/2.8 8/2 - - - 16/2 
O44 9/3.2 - 6/1.6 - 6/2.5 - 
O45 16/2.9 9/2.3 16/2.1 13/2 - - 

J5 

O51 - 6/2.2 - 7/2.8 12/2 8/0.9 
O52 8/3 - 12/2.7 16/2.7 - 6/1 
O53 13/2.5 12/2.3 - - 16/1.8 8/0.7 
O54 - 4/2 6/2 5/3 12/1.5 - 
O55 13/3.2 - - 8/2.5 - 9/1.2 
O56 11/2.8 3/2.5 10/2.5 12/2.4 16/2 5/0.9 

J6 

O61 - 11/1.2 - - 7/1.9 8/0.8 
O62 - - 8/2 12/3 - 6/1 
O63 10/2.4 5/1 - 13/2.1 6/2 - 
O64 16/2.2 - 8/1.7 - - 12/1.1 

 
Table 4. Scheduling scheme results under different weight coefficients 

e.g. α β Cmax E 

1 1 0 49 388.4 
2 0.8 0.2 54 378.2 
3 0.5 0.5 61 363.5 
4 0.3 0.7 72 362.9 
5 0 1 87 354.8 

 
From Table 2, it can be seen that the maximum completion time and energy 

consumption values obtained under five different weight schemes differ and are inversely 
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proportional to the corresponding weight values. Specifically, as the weight value 
increases, the corresponding target value decreases, resulting in a better outcome. 
Meanwhile, the preferences of decision-makers are crucial, as different preferences can 
lead to different target values and scheduling plans. Therefore, decision-makers can 
select appropriate scheduling plans based on the actual production situation. Figure 5 
shows the scheduling scheme obtained by the algorithm in this article, with completion 
time and energy consumption weights of 1 and 0, respectively. Among them, the vertical 
axis represents the processing machine, and the horizontal axis represents time. 

 
In Figure 5, the original scheduling plan for producing this type of part has a period of 

61 minutes, while the optimal scheduling plan, optimized using this algorithm has a period 
of 49 minutes. Compared to the original scheduling scheme, the optimized scheduling 
scheme reduced the production interval by 19.67%, thus verifying the effectiveness of the 
proposed algorithm. 

 

 

Figure 5. Gantt chart on the weight of 1,0. 

 
CONCLUSIONS AND RECOMMENDATIONS 

 
In this paper, a FJSP problem model is proposed. The objective function is to minimize 

both the maximum completion time and the total energy consumption. In order to 
effectively solve this problem, an improved genetic algorithm method is introduced. 
MATLAB is used to simulate the simplified actual FJSP, and scheduling schemes based on 
different preferences of decision-makers are presented, along with the corresponding 
scheduling Gantt chart. 

 

However, this study still has some limitations, as it only considers two objectives: 
completion time and energy consumption. In actual production, there may be other 
important objectives, such as equipment utilization, product quality, worker satisfaction, 
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and material flow costs. Single or dual-objective optimization may not fully reflect the 
complexity and diversity of production systems. 

 

IMPLICATIONS 
 
In the face of global competition in the integration of the world economy, for the 

manufacturing industry to stand out in the cruel survival of the fittest, enterprises must 
accelerate their response speed to external changes, improve product quality and 
performance, reduce various costs in process links, and provide personalized services 
according to customer needs. Among these key points, improving the production 
efficiency of enterprises through reasonable production scheduling is crucial. 
Consequently, ensuring an efficient production rhythm while aiming to reduce total 
energy consumption has become a research focus for experts and scholars. 

 
Therefore, by optimizing production scheduling, the company can significantly reduce 

non-cutting time, improve overall production efficiency, and gain an advantage in market 
competition. Efficient production scheduling helps to reduce various costs in the 
production process, including time costs, labor costs, material costs, and more, while also 
improving profit margins. By improving production efficiency and product quality, 
companies can establish stronger core competitive advantages, and resist market risks 
and the impact of competitors. 

 

ACKNOWLEDGEMENT 
 

We sincerely express our deepest gratitude to all individuals and institutions who 
have contributed to the success of this research project. Special thanks to our families, 
who not only provided valuable financial support but also served as a source of 
motivation for us to keep moving forward. At the same time, we are deeply honored and 
grateful to the companies surveyed, who generously shared their valuable time and 
insights, laying a solid foundation for in-depth and accurate research. 

 

DECLARATIONS 
 

Conflict of Interest  
 

There is no conflict of interest in the study. 
 

Informed Consent 
 

Not applicable. 
 

Ethics Approval 
 

Not yet applicable.  



 

3563 

 

 

REFERENCES 
 

Chapman, C. D., Saitou, K., & Jakiela, M. J. (2021). Genetic algorithms as an approach to 
configuration and topology design. In International Design Engineering Technical 
Conferences and Computers and Information in Engineering Conference (Vol. 11818, pp. 
485-498). American Society of Mechanical Engineers. 
https://doi.org/10.1115/DETC1993-0338. 

Du, Y., Li, J. Q., Chen, X. L., Duan, P. Y., & Pan, Q. K. (2023). Knowledge-based 
reinforcement learning and estimation of distribution algorithm for flexible job shop 
scheduling problem. IEEE Transactions on Emerging Topics in Computational 
Intelligence, 7(4), 1036-1050. https://doi.org/10.1109/TETCI.2022.3145706. 

Fakhrzad, M. B., Sadeghieh, A., & Emami, L. (2013). A new multi-objective job shop 
scheduling with setup times using a hybrid genetic algorithm. 
https://sid.ir/paper/589254/en. 

Gu, J., Gu, M., Cao, C., & Gu, X. (2010). A novel competitive co-evolutionary quantum 
genetic algorithm for stochastic job shop scheduling problem. Computers & 
Operations Research, 37(5), 927-937. https://doi.org/10.1016/j.cor.2009.07.002. 

Jiang, Z., & Le, Z. (2014). Study on multi-objective flexible job-shop scheduling problem 
considering energy consumption. Journal of Industrial Engineering and Management 
(JIEM), 7(3), 589-604. https://doi.org/10.3926/jiem.1075. 

Kacem, I., Hammadi, S., & Borne, P. (2002). Approach by localization and multiobjective 
evolutionary optimization for flexible job-shop scheduling problems. IEEE 
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 32(1), 
1-13. https://doi.org/10.1109/TSMCC.2002.1009117. 

Li, J. Q., Pan, Q. K., & Gao, K. Z. (2011). Pareto-based discrete artificial bee colony 
algorithm for multi-objective flexible job shop scheduling problems. The International 
Journal of Advanced Manufacturing Technology, 55, 1159-1169. 
https://doi.org/10.1007/s00170-010-3140-2. 

Liang, X., Chen, J., Gu, X., & Huang, M. (2021). Improved adaptive non-dominated sorting 
genetic algorithm with elite strategy for solving multi-objective flexible job-shop 
scheduling problem. IEEE Access, 9, 106352-106362. 
https://doi.org/10.1109/ACCESS.2021.3098823. 

Luo, S., Zhang, L., & Fan, Y. (2021). Dynamic multi-objective scheduling for flexible job 
shop by deep reinforcement learning. Computers & Industrial Engineering, 159, 107489. 
https://doi.org/10.1016/j.cie.2021.107489. 

Lei, D., Li, M., & Wang, L. (2018). A two-phase meta-heuristic for multiobjective flexible 
job shop scheduling problem with total energy consumption threshold. IEEE 
Transactions on Cybernetics, 49(3), 1097-1109. 
https://doi.org/10.1109/TCYB.2018.2796119. 

Moslehi, G., & Mahnam, M. (2011). A Pareto approach to multi-objective flexible job-shop 
scheduling problem using particle swarm optimization and local search. International 
Journal of Production Economics, 129(1), 14-22. 
https://doi.org/10.1016/j.ijpe.2010.08.004. 

https://doi.org/10.1115/DETC1993-0338
https://doi.org/10.1109/TETCI.2022.3145706
https://doi.org/10.1016/j.cor.2009.07.002
https://doi.org/10.3926/jiem.1075
https://doi.org/10.1109/TSMCC.2002.1009117
https://doi.org/10.1109/ACCESS.2021.3098823
https://doi.org/10.1016/j.cie.2021.107489
https://doi.org/10.1109/TCYB.2018.2796119
https://doi.org/10.1016/j.ijpe.2010.08.004


 

3564 

 

Momenikorbekandi, A., & Abbod, M. F. (2023). A novel metaheuristic hybrid 
parthenogenetic algorithm for job shop scheduling problems: Applying an 
optimization model. IEEE Access, 11, 56027-56045. 
https://doi.org/10.1109/ACCESS.2023.3278372. 

Mantawy, A. H., Abdel-Magid, Y. L., & Selim, S. Z. (1999). Integrating genetic algorithms, 
tabu search, and simulated annealing for the unit commitment problem. IEEE 
Transactions on Power Systems, 14(3), 829-836. https://doi.org/10.1109/59.780892. 

Piroozfard, H., Wong, K. Y., & Wong, W. P. (2018). Minimizing total carbon footprint and 
total late work criterion in flexible job shop scheduling by using an improved multi-
objective genetic algorithm. Resources, Conservation and Recycling, 128, 267-283. 
https://doi.org/10.1016/j.resconrec.2016.12.001. 

Reijnen, R., Zhang, Y., Bukhsh, Z., & Guzek, M. (2023). Learning to adapt genetic 
algorithms for multi-objective flexible job shop scheduling problems. In Proceedings 
of the Companion Conference on Genetic and Evolutionary Computation (pp. 315-318). 
https://doi.org/10.1145/3583133.3590700. 

Shi, S., & Xiong, H. (2024). Solving the multi-objective job shop scheduling problems with 

overtime consideration by an enhanced NSGA-Ⅱ. Computers & Industrial 

Engineering, 190, 110001. https://doi.org/10.1016/j.cie.2024.110001. 
Slowik, A., & Kwasnicka, H. (2020). Evolutionary algorithms and their applications to 

engineering problems. Neural Computing and Applications, 32, 12363-12379. 
https://doi.org/10.1007/s00521-020-04832-8. 

Tan, C. J., Hanoun, S., & Lim, C. P. (2015). A multi-objective evolutionary algorithm-based 
decision support system: A case study on job-shop scheduling in manufacturing. 
In 2015 Annual IEEE Systems Conference (SysCon) Proceedings (pp. 170-174). IEEE. 
https://doi.org/10.1109/SYSCON.2015.7116747. 

Tang, D., & Dai, M. (2015). Energy-efficient approach to minimizing the energy 
consumption in an extended job-shop scheduling problem. Chinese Journal of 
Mechanical Engineering, 28(5), 1048-1055. https://doi.org/10.3901/CJME.2015.0617.082. 

Wang, L. (2020). Multi-objective optimization based on decomposition for flexible job 
shop scheduling under time-of-use electricity prices. Knowledge-Based Systems, 204, 
106177. https://doi.org/10.1016/j.knosys.2020.106177. 

Wei, L., He, J., Guo, Z., & Hu, Z. (2023). A multi-objective migrating birds optimization 
algorithm based on game theory for dynamic flexible job shop scheduling 
problem. Expert Systems with Applications, 227, 120268. 
https://doi.org/10.1016/j.eswa.2023.120268. 

Xing, L. N., Chen, Y. W., & Yang, K. W. (2011). Multi-population interactive coevolutionary 
algorithm for flexible job shop scheduling problems. Computational Optimization and 
Applications, 48(1), 139-155. https://doi.org/10.1007/s10589-009-9244-7. 

Xia, W., & Wu, Z. (2005). An effective hybrid optimization approach for multi-objective 
flexible job-shop scheduling problems. Computers & Industrial Engineering, 48(2), 
409-425. https://doi.org/10.1016/j.cie.2005.01.018. 

https://doi.org/10.1109/ACCESS.2023.3278372
https://doi.org/10.1109/59.780892
https://doi.org/10.1016/j.resconrec.2016.12.001
https://doi.org/10.1145/3583133.3590700
https://doi.org/10.1016/j.cie.2024.110001
https://doi.org/10.1109/SYSCON.2015.7116747
https://doi.org/10.1016/j.knosys.2020.106177
https://doi.org/10.1016/j.eswa.2023.120268
https://doi.org/10.1016/j.cie.2005.01.018


 

3565 

 

Xie, J., Li, X., Gao, L., & Gui, L. (2023). A hybrid genetic tabu search algorithm for 
distributed flexible job shop scheduling problems. Journal of Manufacturing 
Systems, 71, 82-94. https://doi.org/10.1016/j.jmsy.2023.09.002. 

Yüksel, D., Taşgetiren, M. F., Kandiller, L., & Gao, L. (2020). An energy-efficient bi-objective 
no-wait permutation flow shop scheduling problem to minimize total tardiness and 
total energy consumption. Computers & Industrial Engineering, 145, 106431. 
https://doi.org/10.1016/j.cie.2020.106431. 

Yu, F., Lu, C., Zhou, J., Yin, L., & Wang, K. (2024). A knowledge-guided bi-population 
evolutionary algorithm for energy-efficient scheduling of distributed flexible job 
shop problem. Engineering Applications of Artificial Intelligence, 128, 107458. 
https://doi.org/10.1016/j.engappai.2023.107458. 

Yin, G., Ma, M., Jia, P., & Ma, X. (2024). Parameter optimization of friction pendulum 
bearings based on the adaptive genetic algorithm considering the overall 
evolutionary status. Buildings, 14(2), 435. 

Zhang, G., Hu, Y., Sun, J., & Zhang, W. (2020). An improved genetic algorithm for the 
flexible job shop scheduling problem with multiple time constraints. Swarm and 
Evolutionary Computation, 54, 100664. https://doi.org/10.1016/j.swevo.2020.100664. 

Zhang, X., Zhang, H., & Yao, J. (2020). Multi-objective optimization of integrated process 
planning and scheduling considering energy savings. Energies, 13(23), 
6181.  https://doi.org/10.3390/en13236181. 

Zuo, Y., Wang, P., & Li, M. (2023). A population diversity-based artificial bee colony 
algorithm for assembly hybrid flow shop scheduling with energy 
consumption. Applied Sciences, 13(19), 10903. https://doi.org/10.3390/app131910903. 

 

Author’s Biography  
 

Lei Chen received a bachelor's degree from Nanchang Hangkong University in 2010 
and a master's degree from the Guangdong University of Technology in 2013. He is 
currently a lecturer at Jiangxi College of Applied Technology and is pursuing a doctorate 
in Information Technology at the University of the East, Manila in the Philippines. His 
research interest includes mechatronics, electronics, and information technology. 

 
Dr. Joan P. Lazaro is a full-time professor at the College of Engineering, Computer 

Engineering Department, and a special lecturer of IT programs at the Graduate School at 
the University of the East. He is a graduate of Doctor of Information Technology and 
Master of Engineering Science from the University of the East Manila Graduate School 
and a Bachelor of Science in Computer Engineering from the University of the East 
Caloocan. Among the different certifications he earned are the following: Professional 
Computer Engineer, Fortinet's Network Security Expert Certification – NSE 1 and 2 
Network Security Associate, Certified Microsoft Innovative Educator Program, and 
National Certificate II in Mechatronics Servicing. His research interests include software 
development, network security, and engineering sciences.  

https://doi.org/10.1016/j.jmsy.2023.09.002
https://doi.org/10.1016/j.cie.2020.106431
https://doi.org/10.1016/j.engappai.2023.107458
https://doi.org/10.1016/j.swevo.2020.100664
https://doi.org/10.3390/en13236181
https://doi.org/10.3390/app131910903

