
International Journal of Computing Sciences Research (ISSN print: 2546-0552; ISSN online: 2546-115X)
Vol. 8, pp. 3217-3234
doi: 10.25147/ijcsr.2017.001.1.215
https://stepacademic.net

This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly credited.

Short Paper*

Modification of Traditional Bully Algorithm using Priority
Queuing Technique Applied in CPU Memory Allocation

Richelle Rose R. Alcaide
Computer Science Department, Pamantasan ng Lungsod ng Maynila, Philippines

rrralcaide2020@plm.edu.ph

Saimon C. Rumol
Computer Science Department, Pamantasan ng Lungsod ng Maynila, Philippines

scrumol2020@plm.edu.ph
(corresponding author)

Vivien A. Agustin

Computer Science Department, Pamantasan ng Lungsod ng Maynila, Philippines
vaagustin@plm.edu.ph

Mark Christopher R. Blanco

Computer Science Department, Pamantasan ng Lungsod ng Maynila, Philippines
mcrblanco@plm.edu.ph

Jonathan C. Morano

Computer Science Department, Pamantasan ng Lungsod ng Maynila, Philippines
jcmorano@plm.edu.ph

Leisyl M. Mahusay

Computer Science Department, Pamantasan ng Lungsod ng Maynila, Philippines
lmocampo@plm.edu.ph

Jamillah S. Guialil

Computer Science Department, Pamantasan ng Lungsod ng Maynila, Philippines
jsguialil@plm.edu.ph

Date received: April 29, 2024
Date received in revised form: June 15, 2024; June 28, 2024
Date accepted: June 30, 2024

3218

Recommended citation:

Alcaide, R. R. R., Rumol, S. C., Agustin, V. A., Blanco, M. C. R., Morano, J. C.,
Mahusay, L. M., & Guialil, J. S. (2024). Modification of traditional bully algorithm
using priority queuing technique applied in CPU memory allocation. International
Journal of Computing Sciences Research, 8, 3217-3234.
https://doi.org/10.25147/ijcsr.2017.001.1.215

*Special Issue on International Research Conference on Computer Engineering and

Technology Education (IRCCETE). Guest Associate Editors: Dr. Roben A. Juanatas (National
University-Manila) and Dr. Nelson C. Rodelas (University of East).

Abstract

Purpose – This study aims to modify the Bully Algorithm, a leader-election algorithm, by
introducing Priority Queuing to optimize its steps, and evaluate its efficiency based on
message count, election time, and instances of communicating with inactive nodes.

Method – Priority Queuing will organize active nodes in descending order based on their
active status, with the election message sent only to the highest-ranked node in the
queue. The study intends to compare the performances of three variations of the Bully
Algorithm (the Traditional Bully Algorithm, the latest enhancement, and the proposed
modification) using a simulator that ensures the algorithms share the same data set.

Result – The findings show that the proposed modification trumps the latest
enhancement only during an increased presence of inactive nodes in the distributed
system. In return, the newest enhancement trumps the proposed modification when
there is little to no presence of inactive nodes.

Conclusion – The proposed modification has successfully reduced the time consumed,
communication costs, and the instance of data transmission with failed nodes compared
to the traditional method. However, it is not completely better or worse than the latest
enhancement.

Recommendation – While conducting the findings for the study, the researchers
recommend looking into achieving the same objectives while also considering the
reactivation of nodes during the election process. The researchers also recommend fine-
tuning the timeout interval and exploring other strategies for enabling multiple nodes to
initiate the election process.

Research Implications – This improved algorithm can efficiently coordinate resource
management in cloud computing environments, facilitate data replication, and
coordinate consensus mechanisms in blockchain networks. These enhancements

3219

optimize coordination, fault tolerance, and scalability in distributed systems, ultimately
improving performance and user experience.

Practical Implication – The findings of this study have several implications, one of which is
enhanced failure tolerance in distributed systems. Moreover, the waiting time-based bully
algorithm is an attractive solution for modern distributed systems due to its ability to
quickly adapt to network dynamic changes without significant performance degradation.

Keywords – distributed system, leader-election, algorithm, bully algorithm, priority
queuing

INTRODUCTION

A distributed system is made up of a variety of distinct procedures that are
physically separated yet share messages (Lamport, 2019). A classic difficulty in distributed
system applications is leader election. Some of the most widely known leader election
algorithms are the Ring Algorithm and the Bully Algorithm. The Bully Algorithm is a
straightforward procedure in which every active process is listed in the system and the
one with the highest ID serves as the coordinator (Shenoy, 2022).

However, this algorithm is costly in terms of communication costs. Numan et al.
(2018) stated that the algorithm has space to improve its performance by reducing the
number of messages during election procedures. Similarly, Azzam et al. (2020) observed
an issue in the Bully Algorithm regarding the time consumption of the Bully Algorithm and
conducted a study using the leader-collaboration method to resolve this issue.
Additionally, the algorithm requires that the failed node keeps receiving election
messages from nodes with lower IDs.

To resolve these issues, the study aims to use the Priority Queuing technique to
reduce the algorithm’s communication cost by having only a single node initiate an
election in any given situation. It also aims to reduce the time consumption of the
algorithm to assign a single node to send and receive messages at any given time, and to
minimize the instances of sending data to a failed node.

Improving the traditional Bully Algorithm contributes to the field by addressing

the mentioned key challenges. Enhancing its communication cost enables the algorithm
to scale to larger systems without sacrificing performance or efficiency. Modern
applications demand real-time responsiveness, and enhancing the traditional Bully
Algorithm’s time consumption in leader election will be more relevant in time-sensitive
applications. In crucial environments where node failures are common, ensuring
uninterrupted operation and system reliability is a vital enhancement in leader election.

3220

LITERATURE REVIEW

Traditional Bully Algorithm

Garcia Molina presented the Bully Algorithm in 1982. The node with the greatest ID
serves as the coordinator in this method (Kanwal et al., 2021). The bully algorithm is more
significant than the ring-based algorithm due to its fault tolerance, which the ring-based
algorithm lacks (Wan, 2023). There are three different message types in the Bully
algorithm: (1) Election, which initiates an election; (2) Answer, which acknowledges a
message; and (3) Coordinator, which identifies a leader (Guo et al., 2020). The flowchart
of the traditional Bully Algorithm is shown in Figure 1.

Figure 1. Flowchart of the Traditional Bully Algorithm

 In a study by Madisetti and Panda (2021), the best-case scenario of this algorithm is
when the second-highest ID is the one that notices the failure of the coordinator and
immediately elects itself as the new Coordinator. In this scenario, the total number of

3221

sent messages will be N-2 if there are N nodes since the kind of message that is sent is
only to broadcast the victory of the self-elected node. Consecutively, the worst-case
scenario would be when the process with the lowest ID detected the failure of the
coordinator. In this instance, the total number of messages to be exchanged will be
N(N+1)2 or O(n2). The Traditional Bully Algorithm has the nodes, election time, and
crashed leader node as input of the process and output is the new leader node. It
assumes that the message delivery between processes is reliable and that each process is
aware of its ID.

Waiting Time-Based Bully Algorithm

 The Waiting-Time Based Bully Algorithm is the latest enhancement of the Bully
Algorithm that was published in October 2022 by Anwar et al. and that suggests when a
node detects that the leader is down, it does not broadcast the assumption immediately.
Instead, the node waits a predetermined period before transmitting its message. When
numerous (or all) nodes notice that the leader node is offline or crashed, only the node
with the smallest load (shortest waiting time) will send an election message to the node
with the second-highest ID. The following is the pseudocode of this enhancement:

1. Initially, the coordinator will assign the WaitingTime to each of the nodes

according to the proposed algorithm.
2. e.g., Node X1, X2, X3, …, Xn detect the coordinator is down.
3. A single node, having the shortest WaitingTime, will send an election message to

the second highest processID node, when waiting time is finished.
4. The second highest processID node will CheckNode (scp_id is down or not)
5. If(scp_id is down):

a. scp_id = ncp_id
b. Broadcast coordinator message (ncp_id, rcp_id)
c. Cancel the remaining node from sending the election.

When a multiple number (p) of nodes or all nodes (n) discover that the leader has

failed, the total amount of messages flowing between the nodes for electing the leader
will be 2(n-2) + p + 1 and 2(n-2) + 1 + 1. This is extremely rare to occur under normal
circumstances and could only occur if the receiver (second-highest process ID node) was
also down. The performance of the Waiting-Time Based Bully Algorithm is observed
following the traditional bully algorithm, the modified bully algorithm, and other
enhancements of bully algorithms by comparing the total number of messages sent
wherein multiple nodes have detected the failed coordinator.

As it is the latest enhancement, this version of the Bully Algorithm is the most

efficient. However, the weakness of this version lies in an increased number of inactive
nodes as election messages could be sent to more nodes if the next nodes with higher
IDs are also inactive. More election messages could result in more time consumed and
more instances of attempts at communicating with failed nodes.

3222

Other Variations of Bully Algorithm

Modified Sandipan-Basu Bully Algorithm

Surolia and Bundele (2020) modified Sandipan-Basu's enhanced Bully Algorithm. In
this version of the Bully Algorithm, the process table only examines node IDs that are
greater than the node. As a result, the process table would require less storage space in
each node's memory. In addition, the table overhead would be reduced. The flowchart
for this algorithm is shown in the figure below:

Figure 2. Flowchart of the Modified Sandipan-Basu Bully Algorithm

Once the modification of the Sandipan-Basu was completed, Surolia and Bundele

compared their study with Sandipan-Basu’s original enhancement of the Bully algorithm
and the traditional version. Their study resulted in the modified Sandipan-Basu exceeding
the performance of its base study, the Sandipan-Basu Bully Algorithm, and the traditional
Bully Algorithm.

3223

In similarity to the Waiting Time-Based Bully Algorithm, the weakness of this
version lies in an increased number of inactive nodes as more election messages could be
sent to inactive nodes resulting in more time consumed and more instances of attempts
at communicating with failed nodes. Additionally, this method requires each node to
store a modified process table in its memory which could lead to additional challenges if
the distributed system allows the addition and/or deduction of nodes.

Adaptive Bully Algorithm

In the study made by Abdullah et al., (2019), an Adaptive Bully Algorithm is
proposed to mitigate the quantity of messages and make the leader election procedure
more flexible and secure. To facilitate the leader election process, the suggested
technique is based on the Highest Process Identification (HPI) and the Next HPI (NHPI).
Furthermore, if the candidate coordinator fails, the leader election is not repeated. The
Pseudocode for the Adaptive Bully Algorithm is shown in Figure 3.

Figure 3. Pseudocode for Adaptive Bully Algorithm

If problems occur during algorithm implementation for the candidate coordinator,

this method leads to stopping an additional round of algorithm implementation when it
fails in starting. To test their hypothesis, Abdullah et al., (2019) made a comparative
analysis between the traditional Bully algorithm, a modified Bully algorithm, and their
study - Adaptive Bully Algorithm. The Adaptive Bully Algorithm performed best in

3224

delivering the least number of messages with the same number of nodes in comparison
to the mentioned algorithms. Four variables (VE, NID, HPI, NHPI) successfully reduced the
complexity of message passing from O(n2) to O(n).

Much like the Waiting Time-Based Bully Algorithm and the Modified Sandipan-Basu

Bully Algorithm, this version’s main weakness is the inclusion of inactive nodes. Election
messages will be sent from highest to lowest IDs without knowing the active status of
these nodes. If there is a high number of inactive nodes during a leader-election there is a
high probability that more election messages will be sent.

METHODOLOGY

The modification of the Traditional Bully Algorithm introduces Priority Queuing, which
is a sorting technique that works similarly in a linear queue. A priority queue is an
abstract data type that treats data components by their priority. The sequence in which
items are removed from a queue is determined by their priorities; the item with the
highest priority will be taken out first, and the one with the lowest priority will be taken
out last (Simplilearn, 2023).

Priority Queuing is used as a solution to the three key issues of the Traditional Bully

Algorithm due to its many uses, such as task scheduling, shortest path algorithms, event-
driven simulations, Huffman coding, and heap sort. Additionally, they are employed in
several computer science and engineering disciplines that call for the sorting and
searching of data according to priority as well as in network routing methods (Tyagi,
2023).

By adding this technique to the algorithm, certain steps in the original algorithm will

be revised to utilize the new information provided by the technique. An article by
Baeldung (2023) stated that systems that manage many programs and their execution
where programs are chosen to run depending on their priority, rely heavily on priority
queues. They are crucial to networking systems like the Internet because they can aid in
prioritizing vital data to ensure that it moves through the system more quickly. The
flowchart for the modification of the traditional bully algorithm is shown in Figure 4.

The flowchart illustrates the highlighted modifications made to the traditional

algorithm, emphasizing the implementation of Priority Queuing and the utilization of
resulting data. While the flowchart appears to entail additional steps, these modifications
ultimately streamline the algorithm, reducing the need for excessive looping and thereby
minimizing overall workload and time consumption.

The process of leader election will only take place once the coordinator has been

detected as failed, which will then be broadcast to the existing nodes with IDs higher
than the elector. Once the broadcast has been acknowledged by the recipients, the
elector will be able to take note of their IDs and their status. Priority Queuing will be

3225

conducted according to the following conditions: the node can send a reply message that
indicates that it is active, and these active nodes will be arranged in the queue from
highest to lowest. The elector will then proceed to send an election message to the first
entity in the queue. Once the status of the new leader and the previous leader has been
confirmed, the leader election will conclude.

Figure 4. Flowchart of the Modification of Traditional Bully Algorithm

The study intends to compare the performances of three variations of the Bully
Algorithm which are the Traditional Bully Algorithm, the Waiting Time-Based Bully
Algorithm by Anwar et al., and the proposed Modification of Traditional Bully Algorithm.
The simulation ensures that these algorithms share the same data set, as determining
which nodes are inactive (if any) are purely randomized.

To determine if this method has succeeded in enhancing the traditional bully

algorithm, the Key Performance Indicators (KPIs) will be the following:

• The total messages sent will indicate the exact communication cost of the
algorithm with the given parameters (number of processes, time interval, number

3226

of inactive nodes, and elector). In reducing the total number of messages sent, the
algorithm will be able to contribute to the overall cost-effectiveness of distributed
systems in employing the Bully Algorithm.

• The total time consumed will also be measured as it indicates how much time is
needed to complete the leader-election process. The time consumed in
milliseconds will be measured by getting the average when utilized by the
following Central Processing Units (CPUs) that are available to the researchers:
AMD Ryzen 5 PRO 4650G with Radeon Graphics 3.70 GHz, Intel(R) Core(TM) i7-
8550U CPU @ 1.80GHz, and Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz 2.50 GHz.
The main benefit of reducing the time consumed in completing the Bully
Algorithm lies in achieving improved system responsiveness and minimized
downtime.

• The total number of redundant messages is also measured, as both the number of
messages sent and the time it takes to complete an election process centers
around the abundance of redundant messages. Redundant messages in this study
are the number of election messages that are received by the same node.

• Lastly, measuring the total instances of communicating with an inactive node will
determine if the study has achieved reducing the risks involved in data
transmission to a failed entity.

RESULTS

The standard scenario is when there are no inactive nodes, elector E is randomized,
and the elected leader is the next highest node. In comparing the performance of the
three variations of the Bully Algorithm, the total messages sent, total redundant
messages, total time elapsed, and instances of communicating with a failed node are
observed which is shown in Table 1.

Table 1. Standard Case of Bully Algorithm Comparative Analysis

No. of
Processes

Total Messages
Total Redundant

Messages
Total Time

Elapsed (ms)
Instances of Communicating

with Failed Node

T W P T W P T W P T W P

10 20 28 17 6 0 0 3,065 1,532 1,521 5 1 2

50 600 147 97 275 0 0 13,325 1,534 1,523 25 1 2

100 2,450 298 197 1,176 0 0 26,061 1,549 1,542 50 1 2

500 62,250 1,498 997 30,875 0 0
128,47

4
1,551 1,544 250 1 2

1,000
249,50

0
2,998 1,997

124,25
0

0 0
267,94

6
1,786 1,750 500 1 2

5,000
6,247,

500
14,998 10,000

3,121,2
50

0 0
1,324,5

60
1,798 1,754 2,500 1 2

where:
T = Traditional Bully Algorithm
W = Waiting Time-Based Bully Algorithm
P = Proposed Modification of Traditional Bully Algorithm

3227

In two out of the four comparisons made for the standard case scenario, the
Proposed Modification performs better than the Traditional and Waiting Time-Based;
while the Waiting Time-Based is superior to the Proposed Modification regarding the
instances of communicating with a failed node, and both Waiting Time-Based and
Proposed Modification performing equally in terms of handling redundant messages.

The best-case scenario for both the Traditional Bully Algorithm and the Waiting

Time-Based Bully Algorithm is when the next highest node starts the election and
eventually elects itself as the new leader. This scenario entails that only the next highest
node is active, and the elector is also the next highest node.

In this specific scenario, each version of the Bully Algorithm excels in one of the
attributes used in comparison. In terms of the number of messages sent, the Traditional
Bully Algorithm is the better choice. In terms of total time elapsed, the Proposed
Modification outperforms the others. All three perform equally in terms of handling
redundant messages for this scenario. Lastly, the Waiting Time-Based is best in terms of
the least instances of communicating with a failed node (Table 2).

Table 2. Best Case Scenario of Traditional and Waiting Time-based Bully Algorithm

Comparative Analysis

No. of
Processes

Total Messages
Total Redundant

Messages
Total Time

Elapsed (ms)

Instances of
Communicating

with Failed Node

T W P T W P T W P T W P

10 22 21 9 0 0 0 1,576 1,552 1,505 9 8 9

50 48 100 49 0 0 0 1,537 1,532 1,528 49 48 49

100 98 200 99 0 0 0 1,557 1,555 1,529 99 98 99

500 498 1,001 499 0 0 0 1,529 1,530 1,530 499 498 499

1,000 998 2,001 999 0 0 0 1,542 1,533 1,512 999 998 999

5,000 4,998 10,000 4,999 0 0 0 1,642 1,629 1,597 4,999 4,998 4,999

where:
T = Traditional Bully Algorithm
W = Waiting Time-Based Bully Algorithm
P = Proposed Modification of Traditional Bully Algorithm

The Worst-case situation for the Traditional Bully Algorithm would be if the lowest
node started the election and had to communicate with all nodes between itself up to the
highest node ID repeatedly. Table 3 compares the performance of the three versions of
the Bully Algorithm in terms of total messages sent, total redundant messages, total time

3228

elapsed, and instances of interacting with a failing node; where the number of inactive
nodes is zero and the elector for each is also zero.

In two of the four comparisons made for the worst-case scenario of the Traditional

Bully Algorithm, the Proposed Modification outperforms the Traditional and Waiting
Time-Based; however, the Waiting Time-Based outperforms the Proposed Modification in
reducing communication with a failed node, while both the Waiting Time-Based and
Proposed Modification perform equally when handling redundant messages.

The Worst-Case Scenario for the Waiting Time-Based Bully Algorithm is when the

lowest-ranking node starts the election and becomes the sole active node to take over as
leader. With N-1 inactive nodes and zero as elector, Table 4 compares the performance of
the three versions of the Bully Algorithm in terms of total messages sent, total redundant
messages, total time elapsed, and instances of interacting with a failing node.

Table 3. Worst Case of Traditional Bully Algorithm Comparative Analysis

No. of
Processes

Total Messages
Total Redundant

Messages
Total Time

Elapsed (ms)

Instances of
Communicating

with Failed Node

T W P T W P T W P T W P

10 80 28 27 35 0 0 5,602 1,511 1,546 10 1 2

50 2,400 148 147 1,175 0 0 26,055 1,536 1,527 50 1 2

100 9,800 298 297 4,850 0 0 52,024 1,546 1,538 100 1 2

500 249,000 1,498 1,497 124,250 0 0 256,761 1,535 1,534 500 1 2

1,000 998,000 2,998 2,997 498,500 0 0 535,531 1,611 1,610 1,000 1 2

5,000 2,949,000 14,998 14,997 1,024,050 0 0 1,705,230 1,703 1,662 5,000 1 2

Table 4. Worst Case of Waiting Time-Based Bully Algorithm Comparative Analysis

No. of Processes
Total Messages

Total Redundant
Messages

Total Time
Elapsed (ms)

Instances of
Communicating

with Failed Node

T W P T W P T W P T W P

10 17 21 17 4 0 0 5,587 1,532 1,518 17 9 9
50 96 101 76 25 0 0 26,071 1,536 1,534 97 48 25
100 196 201 139 62 0 0 51,482 1,539 1,537 197 98 38
500 996 1,001 968 133 0 0 256,416 1,531 1,532 997 498 278

1,000 1,996 2,001 1,706 295 0 0 509,30
3 1,612 1,649 1,997 998 705

5,000 9,996 10,001 6,534 3,467 0 0 2,559,7
10 1,695 1,607 9,997 4,998 1,533

In three out of four instances of comparison for this scenario, the Proposed
Modification outperforms the other two versions. The only instance where the Proposed

3229

Modification did not outperform is when it is equal to the Waiting Time-Based Bully
Algorithm in terms of handling redundant messages.

DISCUSSION

The performance of a CPU's allocation is affected by its resources such as storage
and the availability of nodes to perform tasks. One of the main goals of modern computer
architecture is to process information efficiently inside the memory. By cutting down on
the cost of time and communication between the memory and the processor, data
processing may significantly reduce the systems' latency and use of resources (Ben-Hur et
al., 2020).

In the standard case and worst-case scenario for Traditional, the proposed

modification outperforms in nearly all aspects, with Waiting Time-Based relatively close in
competition. For the best-case scenario, there is no clear outperforming variation.
However, regarding the worst case for Waiting Time-Based, the proposed modification is
the most efficient among the three.

In the Case Scenario of Traditional and Waiting Time-based Bully Algorithms for

Comparative Analysis, Each version of comparison excels in different attributes. In terms
of messages, the Traditional Bully Algorithm outperforms the three comparisons. In total
time-elapsed the proposed modification is the best choice. However, in regarding the
Waiting Time-Based is best in terms of the least instances of communicating with a failed
node.

The Waiting Time-Based Bully Algorithm and the proposed modification have

significantly reduced the KPIs from the Traditional Bully Algorithm. Both variations
reduced the time and communication costs by eliminating redundant messages by
sending a single election message to their respective version's next most eligible
candidate for the new leader instead of sending an election message to all possible
candidates.

The proposed modification only trumps over the Waiting Time-Based during an

increased presence of inactive nodes in the distributed system as the Waiting Time-Based
is still prone to sending an election message to node(s) that are inactive. In return,
Waiting Time-Time Based trumps the proposed modification when there is little to no
presence of inactive nodes. This results in the proposed modification to communicate
with a failed node more than the Waiting time based on a single instance. However, the
purpose of that additional instance is to ensure the inactivity of the previous leader node,
which may restart the leader-election process if it is reactivated.

3230

CONCLUSIONS AND RECOMMENDATIONS

This study’s objective is to reduce the communication cost, the time consumed,
and instances of communicating with a failed node from the Traditional Bully Algorithm.
The proposed modification has achieved all of these in nearly all cases; however, it is not
completely better nor worse than the latest enhancement, which is the Waiting Time-
based Bully Algorithm by Anwar et al.

While conducting the results and discussion of the study, the researchers came up
with the following recommendations for future studies:

The proposed modification has greatly lowered the number of messages involved

in the leader election at the cost of not considering the reactivation of nodes after the
Priority Queuing has been made. If there is a way to achieve the same objectives in
addition to considering the reactivation of nodes with minimal communication to the
inactive nodes will make the Bully Algorithm more flexible and adaptive. Furthermore, the
study has also succeeded in lowering the time it takes to complete a leader election with
Priority Queuing; wherein the most time-consuming task in the process is awaiting the
time interval between each communication among all nodes. If there is a way to fine-tune
the timeout interval per communication, it can improve the algorithm's responsiveness
and fault tolerance. Lastly, it is also ideal to explore other strategies in enabling multiple
nodes to initiate the election process simultaneously, while also minimizing the message
cost of each election. This can expedite the leader election process, especially in larger
distributed systems.

These recommendations aim to address various aspects of the Bully Algorithm

that can further improve its adaptability, efficiency to security, and fault tolerance. These
enhancement recommendations can be beneficial to system architects, designers,
developers, and engineers.

IMPLICATIONS

In the fields of high-performance computing, artificial intelligence, big data
analytics, machine learning, deep learning, signal processing, and bioengineering, parallel
and distributed computing has become essential (Dhariwal, 2023). Achieving the study's
goals will enhance the Bully Algorithm's performance, reliability, responsiveness, and
fault tolerance for leader-election processes in distributed computing.

In cloud computing environments, where multiple virtual machines (VMs) are

hosted across distributed servers, the improved Bully Algorithm could be used for leader
election among VM instances. This ensures efficient resource coordination and
management, enabling seamless scaling and load balancing across the cloud
infrastructure.

3231

In blockchain networks, where distributed nodes collaborate to maintain a
decentralized ledger of transactions, the improved Bully Algorithm could be used for
leader election among blockchain nodes to coordinate consensus mechanisms, block
validation, and transaction processing. This enhances the security, scalability, and
efficiency of blockchain networks.

In each of these scenarios, the improved Bully Algorithm plays a crucial role in

facilitating efficient coordination, fault tolerance, and scalability in real-world distributed
systems, contributing to improved system performance, reliability, and user experience.

ACKNOWLEDGEMENT

 This research would not be successful without the assistance and help of those
who inspired and encouraged the researchers to conduct the study. The researchers
would like to express their appreciation to all the people and organizations that aided the
researchers in conducting this study, the following:

To the thesis adviser for this study, for generously providing her time, invaluable
guidance, and unwavering support. Her constructive criticisms greatly contributed to the
refinement of the study and provided the researchers with unbiased feedback to aid in
thinking outside the box.

To the panelists, who provided valuable feedback and suggestions during the

defense of this research. Their insightful comments and recommendations have
significantly enhanced the quality of the study.

To the coordinators for this thesis who determinedly pushed the researchers to

complete the study. The coordinators have dedicated much of their time and efforts in
supporting the researchers to provide the strength to overcome challenges and
persevere until the end.

Finally, the researchers would like to acknowledge all the individuals who have

contributed in any way, shape, or form to the success of this research. No matter the
weight of support that has been provided, it is greatly appreciated.

FUNDING

 The study did not receive funding from any institution.

DECLARATIONS
Conflict of Interest

 The researchers declare no conflict of interest in this study.

3232

Informed Consent

 The study did not require informed consent as participants were not needed to
conduct this study.

Ethics Approval

The study did not require ethics approval.

REFERENCES

Abdullah, M., Al-Kohali, I., & Othman, M. (2019). An adaptive bully algorithm for leader

elections in distributed systems. In Parallel Computing Technologies: 15th
International Conference, PaCT 2019, Almaty, Kazakhstan, August 19–23, 2019,
Proceedings 15 (pp. 373-384). Springer International Publishing.

Anwar, M. N. B., Nahar, A., Md, N. K., & Shuvo, M. H. (2022). A Waiting time-based bully
algorithm for leader node selection in distributed systems. Malaysian Journal of
Science, 38-43.

Azzam, A., Aboshama, A., Ali, R., & Fekry, M. (2020). Leader Deputies Algorithm for leader
election in distributed systems. Retrieved from ResearchGate.

Baeldung. (2024, March 18). Priority queue | Baeldung on Computer Science. Baeldung on
Computer Science. Retrieved from https://www.baeldung.com/cs/priority-queue

Ben-Hur, R., Ronen, R., Haj-Ali, A., Bhattacharjee, D., Eliahu, A., Peled, N., & Kvatinsky, S.
(2020). SIMPLER MAGIC: Synthesis and mapping of In-Memory logic executed in a
single row to improve throughput. IEEE Transactions on Computer-aided Design of
Integrated Circuits and Systems, 39(10), 2434–2447.

Dhariwal, N. (2023, December). Using Machine Learning Regression Model to Predict the
Optimum Election Algorithm for Parallel and Distributed Computing Systems. In
2023 Third International Conference on Smart Technologies, Communication and
Robotics (STCR) (Vol. 1, pp. 1-5). IEEE.

Guo, H., Li, W., Nejad, M., & Shen, C. C. (2020). Proof-of-event recording system for
autonomous vehicles: A blockchain-based solution. IEEE Access, 8, 182776-182786.

Kanwal, S., Iqbal, Z., Irtaza, A., Ali, R., Siddique, K. (2021). A genetic-based leader election
algorithm for IoT cloud data processing. Computers, Materials & Continua, 68(2),
2469-2486.

Lamport, L. (2019). Time, clocks, and the ordering of events in a distributed system. In
Concurrency: The works of Leslie Lamport (pp. 179-196).
https://doi.org/10.1145/3335772.3335934

Madisetti, V. K., & Panda, S. (2021). A dynamic leader election algorithm for decentralized
networks. Journal of Transportation Technologies, 11(3), 404-411.

Numan, M., Subhan, F., Khan, W. Z., Assiri, B., & Armi, N. (2018, November). Well-
organized bully leader election algorithm for distributed system. In 2018

3233

International Conference on Radar, Antenna, Microwave, Electronics, and
Telecommunications (ICRAMET) (pp. 5-10). IEEE.

Shenoy, P. (March 2022). CMPSCI 677 Operating Systems. UMass Amherst. Retrieved
from:
https://lass.cs.umass.edu/~shenoy/courses/spring22/lectures/Lec14_notes.pdf

Simplilearn. (2023). Priority queue in data structure: implementation, types, and more.
Simplilearn.com. Retrieved from: https://www.simplilearn.com/tutorials/data-
structure-tutorial/priority-queue-in-data-
structure#:~:text=Priority%20queue%20in%20a%20data%20structure%20is%20an%20e
xtension%20of,the%20element%20with%20lower%20priority.

Surolia, J., & Bundele, M. M. (2020). Design and analysis of modified bully algorithm for
leader election in distributed system. In International Conference on Artificial
Intelligence: Advances and Applications 2019: Proceedings of ICAIAA 2019 (pp. 337-
347). Springer Singapore.

Tyagi, G. (2023). Priority Queue (Data Structure). Retrieved from
https://www.codingninjas.com/studio/library/applications-of-priority-queue

Wan, Z. (2023). Fundamental Algorithms in Distributed Systems. Journal Software, 18(1),
44-54.

Author’s Biography

Ms. Richelle Rose R. Alcaide, the primary author of this paper, is a student at
Pamantasan ng Lungsod ng Maynila (University of the City of Manila), Philippines. She
graduated from high school with honors at Manila Science High School and is in the
process of completing her bachelor’s degree in computer science. She aims to focus her
research on enhancing algorithms and studies related to Machine Learning, Natural
Language Processing, and Data Analytics.

Mr. Saimon C. Rumol, the primary author of this paper, is also a student at the
Pamantasan Lungsod ng Maynila, He graduated from National Teacher's College with
honors and is in the process of completing his Bachelor's Degree in Computer Science at
the University of Pamantasan Lungsod ng Maynila.

Ms. Vivien A. Agustin is an Assistant Professor at Pamantasan ng Lungsod ng
Maynila, serving as Program Chairperson of the Information Technology Department.
With 22 years of experience, she previously worked as a professor and program
coordinator at Universidad de Manila. She holds a Bachelor's degree in Information
Technology from St. Paul University in Tuguegarao, Cagayan, and a Master's degree in
Information Technology and Public Management Governance. Currently pursuing a
Doctorate in Information Technology at La Consolacion University Philippines, she is
actively involved in professional organizations such as PSITE-NCR and Institute of Industry
and Academic Research Incorporated, while also contributing research publications to
the global Information Technology field.

3234

Mr. Mark Christopher R. Blanco is an Instructor 3 at Pamantasan ng Lungsod ng
Maynila and is designated as the Chief of the Information and Communications
Technology Office of the same University. Mr. Blanco is currently taking his Masters in
Information Technology at Pamantasan ng Lungsod ng Maynila. Currently, Mr. Blanco
focuses on research and studies related to Natural Language Processing, Machine
Learning, Image Processing, Neural Networks, Algorithms, Data Analytics, and Data
Mining.

Mr. Jonathan C. Morano is a full-time Instructor and Capstone Coordinator at
Baliwag Polytechnic College, concurrently serving as a part-time Lecturer and Thesis
Writing Coordinator at Pamantasan Ng Lungsod Ng Maynila. He holds a Bachelor of
Science degree in Computer Science from the Technological University of the Philippines -
Manila and is currently pursuing a Master of Science in Information Technology at La
Consolacion University Philippines – Malolos Bulacan. His research interests encompass
algorithm enhancement, with a focus on Beaufort Cipher, K-Nearest Neighbors (KNN),
and Vigenère Cipher.

Ms. Leisyl M. Mahusay is a graduate of Master of Engineering Management major
in Systems Management and currently taking up a Doctor of Philosophy in Computer
Science (PHdCS) at Technological Institute of the Philippines (TIP), Manila. A Licensed
Examination for Teacher (LET) passer. She graduated from the Pamantasan ng Lungsod
ng Maynila (PLM) with a degree Bachelor of Science in Computer Science in 1993. Ms.
Mahusay is a career-oriented woman. She works as a permanent IT Officer and a part-
time faculty member at the College of Information System and Technology Management
(CISTM. She became an Assistant Vice President of the Information and Communication
Technology Office (ICTO). She dedicated her life to education. Over the course of her
more than twenty (20) years as a full-time faculty member, she held many positions
within the College of Engineering and Technology, including lead, chair, and college
secretary.

Ms. Jamillah S. Guialil is a dedicated computer scientist and educator. She earned
her Computer Science degree from Pamantasan ng Lungsod ng Maynila (PLM). Currently
serving as a Computer Programmer II at PLM, Jamillah plays a vital role in developing and
maintaining essential software systems for the university. Alongside her professional role,
she serves as a part-time faculty member in the Computer Department, inspiring students
and fostering a dynamic learning environment. Actively engaged in the tech community,
Jamillah's dedication to lifelong learning reflects her unwavering passion for technology
and education.

