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Abstract 
 
Purpose – This study aims to investigate the impact of the proposed BD-CRAFT, a variant of 
the CRAFT algorithm applying preprocessing steps as blurry or non-blurry image 
classification using Laplacian and a deblurring technique known as blind deconvolution, in 
improving the performance of the top three state-of-the-art scene text detection 
algorithms – SenseTime, TextFuseNet, and TencentAILab. 
 
Methodology – The researchers utilized the ICDAR 2013 Focused Scene Text Competition 
Challenge 2 dataset and the Intersection over Union (IoU) to determine the performance 
of the proposed BD-CRAFT. The IoU h-mean of the top three algorithms was compared 
against those of the modified versions. 
 
Results – Each algorithm variant significantly improves the overall h-mean and some of the 
precision and recall values. TextFuseNet + BD-CRAFT yields 93.55% h-mean, while the 
precision shows an impressive improvement of over 4% to increase the precision to 95.71%. 
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Meanwhile, TencentAILab + BD-CRAFT achieved an h-mean result of 94.77% with precision 
and recall improvement. Furthermore, SenseTime + BD-CRAFT ranked first with a very 
impressive 95.22% h-mean and showed a significant improvement of over 4%, which made 
it the top-ranked algorithm. 
 
Conclusion – Evidence shows that when BD-CRAFT is combined with other algorithms, their 
performances are improved; hence BD-CRAFT has a significant impact on the text 
detection performance of these algorithms. 
 
Recommendation – As possibilities for further studies, it would be interesting to investigate 
the other state-of-the-art algorithms for scene text detection that would also benefit from 
BD-CRAFT.  Exploring other preprocessing techniques that can be incorporated into text 
detection algorithms in general, may be suitable. 

Research Implication – Though the performances of current state-of-the-art algorithms are 
already commendable, the use of image classification and blind deconvolution as 
preprocessing techniques helps the top-performing text detection algorithms perform 
better in natural scene images hence the proposed method can be utilized in improving 
scene text detection. 
 

Keywords – blind deconvolution, image classification, image deblurring, image processing, 
text detection 

 

 

INTRODUCTION  
 

Text detection in natural scenes has been a significant and active research subject in 
computer vision and document analysis because of its wide range of applications. These 
applications include image search (Zu et al., 2016; Gordo et al., 2016), target geolocation 
(Namazi et al., 2022; Renshaw et al., 2022), human-computer interaction (Chakraborty et 
al., 2018; Brodić & Amelio 2016), robot navigation (Nguyen et al., 2016; Panchpor et al., 
2018), and industrial automation (Sharma et al., 2022; Gao et al., 2021), can greatly benefit 
from the detailed information included in the text. Despite advances in the field, several 
challenges still exist, such as noise, blur, distortion, occlusion, and variance. 

 
In 2011, the Robust Reading Competition emerged in conjunction with the International 

Conference on Document Analysis and Recognition (ICDAR). The competition is 
structured around several challenging computer vision tasks that cover a broad range of 
actual conditions. The Focused Scene Text is one such challenge, and it focuses on reading 
texts in actual scenarios, with "focused text"—images of text that are primarily focused 
around the text content of interest—as the scenario under examination. Furthermore, 
ICDAR 2011, ICDAR 2013, and ICDAR 2015 are the three editions of the Focused Scene Text 
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Challenge. For the tasks of text localization, text segmentation, and word recognition, the 
ICDAR 2013 is the definitive one (Robust Reading Competition, 2020). 

 
One of the most commonly used evaluation metrics in text detection is the 

Intersection-over-Union (IoU). The algorithms having the best IoU h-mean in the above-
mentioned competition include: SenseTime (the top-ranked algorithm) whose h-mean is 
93.62%, TextFuseNet with 93.11% h-mean, TencentAIlLab with 93.05%, VARCO with 91.71%, 
HIT with 91.48% h-mean and CRAFT with 91.41%. In SenseTime, a single end-to-end trainable 
Fast Oriented Text Spotting (FOTS) network that is designed for simultaneous detection 
and recognition is used. To share convolutional features across detection and 
identification, it specifically introduced RoIRotate (Kim & Park, 2020). 

 
Most scene text detectors train their networks to locate bounding boxes at the word 

level. In complex situations, such as texts with arbitrary font and size, and varied text scales 
and shapes, such as curved, distorted, or exceedingly long texts, this level may be 
challenging. In these situations, detectors frequently return bounding boxes at the 
character level rather than the entire word. One algorithm that can handle these cases is 
the Character Region Awareness for Text detection (CRAFT) (Baek et al., 2019). It is a text 
detector that localizes the specific character regions and then connects the detected 
characters to a text instance. Both the affinity score, which merges all of the characters 
into one instance, and the character region score, which is used to localize specific 
characters within an image, are generated using a convolutional neural network. 

 
Currently, the CRAFT algorithm ranks sixth in the competition, with an IoU h-mean of 

91.42%. Though CRAFT’s performance is already commendable, there is still much room for 
improvement because it assumes that the images of ICDAR 2013 are free from any blur or 
image distortion. Likewise, current text detection algorithms also treat the input images to 
be clear and do not employ image preprocessing before running the text detection 
algorithm hence the idea of imploring image classification and image deblurring through 
Blind Deconvolution as image preprocessing was conceptualized. 

 
A recently concluded study (Albarillo & Fernandez, 2022) showed an improved text 

detection performance of CRAFT by adding some preprocessing steps that include 
automatically detecting blurry images and then attempting to reduce the blur of the 
identified blurry images before running the CRAFT algorithm. The resulting technique is 
referred to as BD-CRAFT, a CRAFT variant. BD-CRAFT was shown to be not only significantly 
better than CRAFT but also outperformed the current best state-of-the-art algorithms for 
scene text detection. In this study, combining BD-CRAFT with some state-of-the-art 
algorithms to further improve their text detection performances is explored.  
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LITERATURE REVIEW 
 

Text Detection  
 

Text detection methods in scene images can be classified into two groups: sliding 
window-based approach and component-connected approach. 

 
The sliding window checks the image densely by employing a multi-scale sub-window 

with a pre-designed classifier. Several sliding window-based methods have been developed. 
One of its strengths is that it calculates a global feature from the traversed windows 
making the said feature to be invariant to numerous low-level distortions or 
transformations. Another strong point of this method includes robustness to noise and 
blur since it exploits features amassed over the whole region of interest. 

 
The Sliding Window works by either localizing individual characters or by localizing the 

complete words and traversing the entire image through the use of a classification window. 
The said strategy usually deals with exhaustive search (Nguyen et al., 2017; Neumann & 
Matas, 2015) as evidenced by the number of windows which grow to O(n2) for an image of 
n pixels, making it less practical. 

 
Another drawback is that the number of rectangles that ought to be assessed grows 

rapidly when text with diverse scale, perspective, rotation, and other distortions should be 
found – an impact that does not occur in common object detection tasks where the 
variance of sliding window parameters is lower (Nguyen et al., 2017). Likewise, it has high 
computational cost since it requires multi-scale windows to handle texts of different font 
sizes resulting in a large number of scanning windows. Finally, it is difficult to design a 
discriminative feature and train a powerful classifier for whether text or non-text.  

 
Existing approaches on sliding windows are usually developed on character level 

detection which is unreliable and is not robust.  Numerous bottom-up steps such as 
identifying and grouping character candidates into text lines are also required which 
results in increased complexity. 

 
A prevalent approach that has achieved promising performance is the connected-

components-based algorithm. This technique finds individual characters using local 
properties of an image such as color, intensity, stroke width, and the like. It detects textual 
information at the pixel level by employing a fast low-level detector and groups the 
detected pixels into text-candidate text components.  

 
Among the connected component-based approaches, Maximally Stable Extremal 

Region (MSER) (Huang et al., 2013) and Stroke Width Transform (SWT) (Epshtein, Ofek & 
Wexler, 2010) are the popular low-level methods for detecting text component candidates. 
The MSERs algorithm can distinguish challenging text patterns, causing the said algorithm 
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to have a good recall in character detection, thus leading to several high-performance 
systems, Stroke Feature Transform (SFT) (Huang et al., 2013), Edge Box (Zitnick & Dollár, 
2014) and Characterness (Li et al., 2014) are some of the recently developed low-level text 
detectors. 

 
The complexity of these detectors is not dependent on the textual content parameters 

as characters of all scales and orientations can be detected in one pass, thus having a great 
impact on its speed. However, these detectors have main difficulties in filtering non-text 
components and combining components into text lines because these detectors generate 
a huge amount of non-text components due to their low-level nature, thus requiring some 
bottom-up post-processing steps to yield good performance.  

 
Recently, automatic text detection has emerged as an active research area in computer 

vision and document analysis, providing a way to access and make use of textual 
information in images. The discipline of computer vision has witnessed a significant amount 
of research in the extraction of accurate texts from scene images (Tian et al., 2016; Shi et 
al., 2017; Shi et al., 2016, Zhou et al., 2017; He et al., 2016). This is because it has numerous 
real-world uses in image retrieval, scene understanding, robot navigation, and document 
analysis. Many multimedia applications, including visual classification (Karaoglu et al., 2016; 
Bai et al., 2017) and video analysis (Yin et al., 2016), require text detection as a prerequisite. 
Due to the inherent issues and difficulties, traditional text identification algorithms 
frequently involve numerous processing phases, such as character/word candidate 
generation (Busta et al., 2015; Jaderberg et al. 2016), and candidate filtering and grouping 
(Baek et al., 2019). 

 

Image Classification 
 

An essential foundation for image depth processing and the use of computer vision 
technologies in related domains involves image classification. To classify images 
traditionally, a process called image preprocessing, feature extraction, classifier 
development, and learning training are involved (Wang, et al, 2019). Traditional image 
classification techniques primarily rely on the extracted fundamental image features to 
achieve image classification, which can serve as a foundation for the future computer-
based acquisition of the semantic data of images. Traditional image classification often 
uses support vector machines and logistic regression to perform image classification and 
uses image color, texture, and other information to calculate image features (Kechagias-
Stamatis & Aouf, 2017). The results of image classification are influenced by knowledge and 
expertise in related domains, in addition to a significant degree of dependence on the 
extracted features. 

 
In addition to being challenging to apply manually acquired features to image 

classification, feature data analysis takes a lot of time. Furthermore, traditional machine 
learning cannot be used to analyze huge datasets, and it is difficult to achieve the 
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optimization of feature design, feature selection, and model training, which reduces the 
model's ability to accurately classify data. As a result, traditional machine learning-based 
image categorization techniques are impacted in numerous application sectors (Ding, et al, 
2019). According to research, low-level essential features can serve as the foundation for 
image classification since texture, shape, and color features can be used for image 
classification and recognition. Traditional image classification techniques often involve the 
extraction of a single feature or a set of features, while support vector machines use the 
extracted features as input values.  

 
Artificial neural network classifiers have helped to advance image classification in 

recent years. Moreover, deep learning has employed the technique of layer-by-layer 
feature extraction to acquire the high-level attributes of the image and achieves the 
training of massive datasets using multilayer network models.  
 

Deblurring Techniques 
 

Many deconvolution techniques have emerged and have been implemented to deblur 
images. These include no neighbor approach, linear deconvolution methods, nonlinear 
methods, statistical methods, blind deconvolution, and image sharpening.  

 
Among the most prevalent deblurring technique is blind deconvolution. Blind 

deconvolution is a well-established image restoration technique, where the point nature 
of the objects photographed exposes the PSF thus making it more feasible.  In most blind 
deconvolution methods, motion blur kernels and the latent image are alternatingly 
optimized in an iterative process. From the estimated latent image and the given blurred 
image, blur kernels are obtained. These kernels are then used to produce a new estimated 
latent image by applying non-blind deconvolution to the given blurred image. This new 
estimated latent image is then used in the next iteration of kernel estimation. As the 
estimated PSF better describes the system optics and the sample image is better isolated 
from the acquired image, the error decreases as the number of cycles increases.  

 
Applying constraints, such as the result cannot be negative, or that the PSF must be 

symmetrical, aids the selection of useful PSF models. A type of constrained iterative 
approach, blind deconvolution, allows N iterations to be directed at improving the PSF, 
followed by N iterations directed at improving the image before repeating: PSF, image, 
PSF, image. 

 
Blind deconvolution, as one of the most common deblurring methods, has been 

considered one of the leading research topics. As proof, several algorithms have been 
proposed. Single-image deblurring has recently attracted great attention in computer 
vision and numerous methods have been developed (Koh et al, 2021; Lai et al., 2016; Park 
et al., 2020). With this, a proposed novel low-rank prior for blind image deblurring. It is 
observed that a simple low-rank model can significantly improve the quality of an input 
image and reduce the blur even without using any kernel information while preserving 
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important edge information. Likewise, a gradient map of blurry input can also be enhanced 
through a low-rank model. With this, an enhanced prior for image processing was 
introduced which combines the low-rank prior of similar patches from the blurry image and 
its gradient map. To further enhance the effectiveness of low-rank prior, the weighted 
nuclear norm minimization method was employed wherein the dominant edges were 
retained while the fine texture and slight edges were eliminated thus allowing for better 
kernel estimation.  

 
METHODOLOGY 
 

The Dataset 
 
The Focused Scene Text Competition Challenge 2 dataset from the 2013 International 

Conference on Document Analysis and Recognition (ICDAR) was used in the study 
(Karatzas et al., 2013). Because this study is primarily concerned with scene images, recent 
computer vision datasets like 2017 COCO-Text (Veit et al., 2016), deTEXT (Yang et al., 2017), 
DOST (Iwamura et al., 2016), FSNS (Smith et al., 2016, MLT (Nayef et al., 2017), and IEHHR 
(Fornés et al., 2017) were not employed. 

 
The ICDAR 2013 Challenge 2 dataset is composed of 299 training images and 233 test 

images. Training images were used to train the text detection algorithms while the test 
images were used to determine the performance of the said detection algorithms. 
Furthermore, the dataset is composed of images explicitly focused on the text content of 
interest. This represents the use case wherein a person focuses a camera on a scene text 
for text reading and translation applications. As such, the focus text is horizontal in most 
cases. Different cameras were used to capture the images in varying environments, 
capturing images in .jpg format but with various sizes (such as 16KB up to 5.82MB), 
dimensions (350x200 up to 3888x2592), orientations (portrait and landscape) and light 
conditions. With this, the ICDAR 2013 was used in the study as it is the definitive one for the 
task of text detection.  
 

Implementation 
 

In the implementation of the CRAFT algorithm, open-source frameworks were utilized 
such as a) Python 3.6, the programming language; b) OpenCV 4.1.0, the image processing 
library; c) Numpy 3.7, Python's fundamental package for scientific computing; and d) 
Anaconda, a distribution of the Python programming. Furthermore, CRAFT uses a fully 
convolutional network architecture based on the VGG-16 backbone. 
 

Meanwhile, Matlab R2018a was used in the implementation of blind deconvolution. It 
combines a desktop environment that is optimized for iterative analysis and design with a 
programming language that natively represents matrix and array mathematics. 
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All the numerous computational experiments in this research were performed using a 
Dell Inspiron 7460 laptop with Intel Core i7-7500U CPU at 2.70GHz and NVIDIA GeForce 
940MX. 
 

Experimentations with the BD-CRAFT Algorithm 
 
BD-CRAFT is a recently proposed technique for text detection (Albarillo & Fernandez, 

2022). It is a variant of the CRAFT algorithm, with a significantly improved performance due 
to primarily two image preprocessing techniques that are executed before running the 
main method of CRAFT:  

1. It employs the Laplacian operator, with a threshold set to 100, to automatically 
detect blurry input images 

2. It deblurs the detected blurry images using Blind Deconvolution, with the point 
spread function (PSF) set to 1,3 since this set of PSF values yielded the best results 
among the other explored PSFs.  

A flowchart describing the main operations of BD-CRAFT is provided in Figure 1. 

 
Figure 1. Flowchart of the proposed BD-CRAFT 
 

The main part of this study involves the exploration of combining BD-CRAFT with some 
state-of-the-art algorithms. The top three state-of-the-art algorithms which include 
SenseTime, TextFuseNet, and TencentAILab were experimented on. Since their actual 
codes are not available for download, the published results in the Robust Reading 
Competition including the actual performances (precision, recall, and h-mean) of each 
image in the ICDAR 2013 were used. The method involves only the 63 identified blurry 
images and the performance results of the target algorithm (SenseTime, TextFuseNet, or 
TencentAILab) are collected and compared with the results of each image when running 
BD-CRAFT. 
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The Evaluation Metrics 
 
Intersection over Union (IoU), a well-known similarity metric that is evaluated as the 

ratio of two entities - the overlapping area and the union area - is used to determine the 
accuracy of the proposed method. IoU measures how well the predicted bounding box 
overlaps with the actual box in the context of our challenge. It ranges from 0 (no overlap) 
to 1, which is the optimal value (perfect overlap). An accurate localization of the texts is 
indicated by an IoU value of 0.5 or higher, which is regarded as a good prediction 
(Rosebrock, 2016) whereas IoU scores below 0.5 are considered poor prediction.  

 
To assess the IoU performance of the method, the precision, recall, and eventually, the 

h-mean are computed from this prediction. Precision is a metric that quantifies the number 
of correct positive predictions made. It evaluates the fraction of correctly classified 
instances among the ones classified as positive. Recall quantifies the number of correct 
positive predictions made out of all positive predictions that could have been made.  It 
measures the proportion of valid positive predictions out of all possible positive 
predictions. Unlike precision which only comments on the correct positive predictions out 
of all positive predictions, recall indicates missed positive predictions. Precision and recall 
can be combined into one metric using H-mean, which covers both characteristics. The 
formulas for these well-known measures are provided below for completeness: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
;       Equation 1

  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
; and     Equation 2  

𝐻𝑚𝑒𝑎𝑛 =  2
(𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
    Equation 3 

The Precision and Recall can be further represented by the equations below. Precision 
is determined by dividing the total number of correctly anticipated positive examples by 
the ratio of correctly predicted positive examples while recall is calculated as the sum of 
true positives across all classes divided by the sum of true positives and false negatives 
across all classes. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐺, 𝐷) =  
∑ 𝐵𝑒𝑠𝑡𝑚𝑎𝑡𝑐ℎ𝐷(𝐷𝑗)

|𝐷|
𝑗=1  

|𝐷|
   Equation 4 

𝑅𝑒𝑐𝑎𝑙𝑙(𝐺, 𝐷) =  
∑ 𝐵𝑒𝑠𝑡𝑚𝑎𝑡𝑐ℎ𝐺(𝐺𝑖)

|𝐺|
𝑖=1  

|𝐺|
    Equation 5 

 
where BestmatchD and BestmatchG indicate the closest match between detection and 
ground truth as defined below: 

  Equation 6 
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  Equation 7 

 
Note that H-mean refers to the harmonic mean of the Precision and Recall and 

therefore takes into account both false positives and false negatives. 
 

Comparison with State-of-the-Art Algorithms 

 
Finally, the IoU h-mean results of the mentioned top three algorithms were compared 

against those of the modified versions (i.e., the versions that incorporate BD-CRAFT). The 
contributory value of BD-CRAFT is established after showing that each of these three 
algorithms yields better IoU h-means after incorporating BD-CRAFT.  

 
RESULTS AND DISCUSSION 
 

Blind deconvolution is a technique for recovering a scene from a blurred image using a 
point spread function (PSF) that is poorly recognized or unknown. The PSF describes how 
much a point of light is spread out (blurred) by an optical system. blind deconvolution 
maximizes the likelihood that the output recovered image, when convolved with a specific 
PSF, is an instance of the input blurry image.  PSF reconstruction begins with a uniform 
array (array of ones), a pair of parameter values, each time. The number of pixels applied 
in each dimension (x, y) during restoration will depend on the combination of parameter 
values. 

 
Figure 2 shows the original image (a) and a selected set of images (b) to (f) restored 

through blind deconvolution using different PSFs as indicated. A deblurred image first 
undergoes blind deconvolution, which is followed by standard text detection with CRAFT. 
Figure 3 further demonstrates how analyzing the reconstructed PSFs may contribute to 
determining the appropriate PSF values for the image. 

 
A technique to pre-classify images as either blurry or non-blurry is included wherein the 

deblurring technique is applied only to images that are automatically detected as blurry. 
This is accomplished by utilizing the Laplacian operator, a differential operator produced 
by the divergence of the gradient of a scalar function in Euclidean space. The Laplacian can 
be used to highlight areas of an image with rapid changes in intensity. Thus, it is frequently 
used in edge detection. 

 
The average variance of the Laplacian is used to describe the blurriness of an image as 

a single-point value. The higher the number, the sharper the edges in the image are. 
Therefore, this value is simply computed for the input image and is compared against a 
specified threshold to automatically identify an image as either blurry or non-blurry. 
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Figure 2. Sample image which underwent blind deconvolution using different PSFs as 
indicated. 

Figure 3. Reconstructed PSFs of the sample image using different PSFs as indicated. 
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After assessing the input scene image, if the image has a focus measure higher than the 

supplied threshold of 100, it is considered non-blurry and the image will then immediately 
undergo scene detection using CRAFT. Otherwise, the scene image further undergoes 
another preprocessing step (blind deconvolution) first. From the 233 images in the ICDAR 
2013 dataset, exactly 63 were classified as blurry and 170 as non-blurry when the threshold 
100 was used.  Refer to Figure 4 for some example images. The two images on the top, 
with blur measures of 7.97 and 28.99, are regarded to be blurry. The last two images 
(bottom) are considered non-blurry, with measures of 265.99 and 693.66. 

 
Figure 4. Example images from the ICDAR 2013 dataset, with their focused measures, 

indicated. 
 

The Effect of Blind Deconvolution the Identified Blurry Images 

Table 1 presents the evaluation results for the 63 identified blurry images together with 
their corresponding threshold of blurriness when using CRAFT and BD-CRAFT. The 
precision, recall, and h-mean of the said images are also presented. 

 
Using (1,3) as the PSF for BD-CRAFT, the updated ranking of the state-of-the-art 

algorithms for Text Detection shows BD-CRAFT ranked top. Observe that BD-CRAFT 
outperforms the first proposed method (which employs Blind Deconvolution in all images 
in the dataset) across all the performance metrics. Its IoU h-mean is 3.05% greater than that 
of the original CRAFT and 0.85% (absolute) higher than that of SenseTime. The top-ranking 
performance was achieved because of the very impressive precision of 95.24%, which tops 
all precision results in the table, and is significantly higher than SenseTime, by over 3%. 
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Table 1. Evaluation Performance of the 63 Blurry Images using BD-CRAFT vs CRAFT 
Blurry 
Images 

Blurriness CRAFT BD-CRAFT 

Img_no  Threshold Precision Recall H-Mean Precision Recall H-Mean 

1 12.8405571 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
4 16.4762852 80.00% 57.14% 66.67% 100.00% 85.71% 92.31% 
10 23.4311781 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
12 36.653517 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
15 28.9903253 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
16 16.1522402 0.00% 0.00% 0.00% 100.00% 50.00% 66.67% 
20 57.4975666 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
21 81.7039225 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
23 15.9194037 100.00% 100.00% 100.00% 94.12% 100.00% 96.87% 
25 7.97007126 33.33% 50.00% 40.00% 100.00% 100.00% 100.00% 
26 35.1926793 90.91% 76.92% 83.33% 100.00% 100.00% 100.00% 
29 50.7909314 100.00% 60.00% 75.00% 75.00% 60.00% 66.67% 
34 16.1037522 100.00% 100.00% 100.00% 45.45% 100.00% 62.50% 
38 14.3117793 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
39 15.4544795 88.89% 80.00% 84.21% 83.33% 100.00% 90.91% 
44 27.4993814 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
45 21.6460108 76.47% 86.67% 81.25% 100.00% 93.33% 96.55% 
48 17.6449657 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
49 56.3667426 100.00% 66.67% 80.00% 100.00% 83.33% 90.90% 
52 99.1999698 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
54 39.2921302 71.43% 83.33% 76.92% 100.00% 100.00% 100.00% 
55 83.6990885 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
58 41.8884998 100.00% 77.78% 87.50% 100.00% 77.78% 87.50% 
59 97.4825748 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
61 61.5662565 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
62 64.4650431 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
63 66.767582 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
64 18.0964371 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
65 12.5359277 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
69 28.2970963 100.00% 100.00% 100.00% 50.00% 100.00% 66.67% 
73 78.597045 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
75 62.6589596 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
77 88.4263075 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
82 56.0501649 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
84 22.8809663 100.00% 83.33% 90.91% 71.43% 83.33% 76.92% 
85 68.5711141 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
87 49.7199117 100.00% 100.00% 100.00% 80.00% 100.00% 88.89% 
88 81.8170171 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
89 14.206154 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
93 13.5899878 50.00% 100.00% 66.67% 100.00% 100.00% 100.00% 
95 57.426799 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
96 11.8740355 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
98 61.3983121 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
123 54.5686799 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
125 29.4063831 83.33% 71.43% 76.92% 100.00% 100.00% 100.00% 
131 65.3736027 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
134 45.5904438 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
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Table 1. Evaluation Performance of the 63 Blurry Images using BD-CRAFT vs CRAFT (cont.) 
Blurry 
Images 

Blurriness CRAFT BD-CRAFT 

Img_no  Threshold Precision Recall H-Mean Precision Recall H-Mean 

138 72.2330041 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
142 73.576066 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
143 24.0986572 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
180 10.3440649 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
181 84.1780428 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
183 81.9879789 100.00% 100.00% 100.00% 100.00% 50.00% 66.67% 
184 26.0136719 80.00% 100.00% 88.89% 100.00% 100.00% 100.00% 
186 35.5071598 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
211 22.1367073 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
217 95.5176921 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
222 65.4059773 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
226 43.1260097 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
227 44.3401323 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
229 16.0993804 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
231 60.5148326 50.00% 33.33% 40.00% 83.33% 100.00% 90.91% 
232 17.4316837 75.00% 100.00% 85.71% 100.00% 100.00% 100.00% 

 

The Proposed BD-CRAFT Algorithm for Text Detection 
 

Using the insights gathered from previous experiments, BD-CRAFT, an improved 
technique for scene text detection is proposed.  

 
Blurry/Non-blurry Classification. Using the Laplacian operator and a threshold of 100, the 

scene text image is automatically classified in this stage as either blurry or non-blurry. 
 
Blind deconvolution. Blind deconvolution is used to deblur images that have been 

identified as blurry. Notably, images that are classified as non-blurry do not undergo this 
step. 

 
Text Detection using CRAFT. After classifying images as blurry or non-blurry and then 

preprocessing the blurry images using blind deconvolution, the text detection step takes 
place. The Character Region Awareness for Text Detection (CRAFT) algorithm was utilized 
in this experiment to detect text areas or regions. 

 
To establish that the proposed method is effective in improving text detection 

performance, the said method was also used in the top three algorithms of the ICDAR 2013 
competition. Table 2 shows the performance of BD-CRAFT and SenseTime, respectively. 
The table illustrates that when BD-CRAFT was applied, 11 images performed better in terms 
of h-mean than using SenseTime, whereas 8 and 9 images performed better in terms of 
precision and recall. However, when BD-CRAFT is used, nine images obtained lower h-mean 
results. The images which have improved results when using BD-CRAFT outnumbered the 
images which had lower results than SenseTime. This partly explains why BD-CRAFT has 
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better detection resulting in 94.47% than SenseTime which only garnered a 93.62% h-mean 
result. 

Table 2. Evaluation Performance of the 63 Blurry Images using BD-CRAFT vs SenseTime 
Blurry 
Images 

 Blurriness BD-CRAFT SenseTime 

Img_no. Threshold Precision Recall H-Mean Precision Recall H-Mean 

1 12.8405571 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
4 16.4762852 100.00% 85.71% 92.31% 71.43% 71.43% 71.43% 
10 23.4311781 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
12 36.653517 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
15 28.9903253 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
16 16.1522402 100.00% 50.00% 66.67% 100.00% 100.00% 100.00% 
20 57.4975666 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
21 81.7039225 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
23 15.9194037 94.12% 100.00% 96.87% 100.00% 100.00% 100.00% 
25 7.97007126 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
26 35.1926793 100.00% 100.00% 100.00% 100.00% 84.62% 91.67% 
29 50.7909314 75.00% 60.00% 66.67% 80.00% 80.00% 80.00% 
34 16.1037522 45.45% 100.00% 62.50% 100.00% 100.00% 100.00% 
38 14.3117793 100.00% 100.00% 100.00% 50.00% 100.00% 66.67% 
39 15.4544795 83.33% 100.00% 90.91% 66.67% 80.00% 72.73% 
44 27.4993814 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
45 21.6460108 100.00% 93.33% 96.55% 100.00% 100.00% 100.00% 
48 17.6449657 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
49 56.3667426 100.00% 83.33% 90.90% 75.00% 75.00% 75.00% 
52 99.1999698 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
54 39.2921302 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
55 83.6990885 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
58 41.8884998 100.00% 77.78% 87.50% 100.00% 77.78% 87.50% 
59 97.4825748 100.00% 100.00% 100.00% 75.00% 75.00% 75.00% 
61 61.5662565 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
62 64.4650431 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
63 66.767582 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
64 18.0964371 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
65 12.5359277 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
69 28.2970963 50.00% 100.00% 66.67% 100.00% 100.00% 100.00% 
73 78.597045 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
75 62.6589596 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
77 88.4263075 100.00% 100.00% 100.00% 50.00% 50.00% 50.00% 
82 56.0501649 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
84 22.8809663 71.43% 83.33% 76.92% 80.00% 66.67% 72.73% 
85 68.5711141 100.00% 100.00% 100.00% 50.00% 100.00% 66.67% 
87 49.7199117 80.00% 100.00% 88.89% 80.00% 100.00% 88.89% 
88 81.8170171 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
89 14.206154 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
93 13.5899878 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
95 57.426799 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
96 11.8740355 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
98 61.3983121 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
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Table 2. Evaluation Performance of the 63 Blurry Images using BD-CRAFT vs SenseTime 
(cont.) 

Blurry 
Images 

 Blurriness BD-CRAFT SenseTime 

Img_no. Threshold Precision Recall H-Mean Precision Recall H-Mean 

123 54.5686799 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
125 29.4063831 100.00% 100.00% 100.00% 100.00% 71.43% 83.33% 
131 65.3736027 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
134 45.5904438 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
138 72.2330041 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
142 73.576066 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
143 24.0986572 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
180 10.3440649 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
181 84.1780428 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
183 81.9879789 100.00% 50.00% 66.67% 75.00% 75.00% 75.00% 
184 26.0136719 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
186 35.5071598 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
211 22.1367073 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
217 95.5176921 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
222 65.4059773 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
226 43.1260097 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
227 44.3401323 100.00% 100.00% 100.00% 100.00% 75.00% 85.71% 
229 16.0993804 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
231 60.5148326 83.33% 100.00% 90.91% 100.00% 100.00% 100.00% 
232 17.4316837 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

 
 

Meanwhile, Table 3 shows the evaluation performance on the 63 identified blurry 
images using BD-CRAFT and TextFuseNet. TextFuseNet ranks second based on the 
published results of the ICDAR 2013 Focused Scene Text Detection Challenge. When BD-
CRAFT is applied, 9 images had better results than that of TextFuseNet while 5 images had 
improved results in terms of precision and 8 images had better recall results.  

 
However, 8 images have higher h-mean results when using TextFuseNet. Comparing 

the number of images that gained better performance, it is evident that BD-CRAFT has 
better results than that of TextFuseNet. This resulted in a 93.11% detection performance of 
TextFuseNet whose h-mean score is compared to the 94.47% h-mean of BD-CRAFT. 

 
Further experiments on the evaluation of the text detection performance of BD-CRAFT 

and TencentAILab were also conducted. Results in Table 4 show that 9 images yielded 
better h-mean results when using CRAFT compared to TencentAILab. In terms of precision, 
10 images had better results while only 3 images had improved recall results when BD-
CRAFT is employed. 

 
On the other hand, 13 images show better h-mean results while 10 images garnered 

lower h-mean results when using TencentAILab. Meanwhile, 8 images have better results 
in terms of precision, and six have garnered higher recall results than that BD-CRAFT. Even 
though TencentAILab has more images which yielded better h-mean results on the 63 
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identified blurry images, BD-CRAFT still got a higher h-mean resulting in 94.47% while 
TencentAILab only yielded 93.05%. This result is influenced by the images which are 
identified as non-blurry which yielded poor detection results when using TencentAILab.  
 
Table 3. Evaluation Performance of the 63 Blurry Images using BD-CRAFT vs TextFuseNet 

(cont.) 
Blurry 
Images 

 Blurriness BD-CRAFT TextFuseNet 

Img_no. Threshold Precision Recall H-Mean Precision Recall H-Mean 

1 12.8405571 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
4 16.4762852 100.00% 85.71% 92.31% 100.00% 57.14% 72.73% 
10 23.4311781 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
12 36.653517 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
15 28.9903253 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
16 16.1522402 100.00% 50.00% 66.67% 100.00% 100.00% 100.00% 
20 57.4975666 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
21 81.7039225 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
23 15.9194037 94.12% 100.00% 96.87% 100.00% 100.00% 100.00% 
25 7.97007126 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
26 35.1926793 100.00% 100.00% 100.00% 100.00% 84.62% 91.67% 
29 50.7909314 75.00% 60.00% 66.67% 100.00% 60.00% 75.00% 
34 16.1037522 45.45% 100.00% 62.50% 100.00% 100.00% 100.00% 
38 14.3117793 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
39 15.4544795 83.33% 100.00% 90.91% 0.00% 0.00% 0.00% 
44 27.4993814 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
45 21.6460108 100.00% 93.33% 96.55% 81.25% 86.67% 83.87% 
48 17.6449657 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
49 56.3667426 100.00% 83.33% 90.90% 100.00% 75.00% 85.71% 
52 99.1999698 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
54 39.2921302 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
55 83.6990885 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
58 41.8884998 100.00% 77.78% 87.50% 100.00% 88.89% 94.12% 
59 97.4825748 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
61 61.5662565 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
62 64.4650431 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
63 66.767582 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
64 18.0964371 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
65 12.5359277 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
69 28.2970963 50.00% 100.00% 66.67% 0.00% 0.00% 0.00% 
73 78.597045 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
75 62.6589596 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
77 88.4263075 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
82 56.0501649 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
84 22.8809663 71.43% 83.33% 76.92% 100.00% 83.33% 90.91% 
85 68.5711141 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
87 49.7199117 80.00% 100.00% 88.89% 100.00% 100.00% 100.00% 
88 81.8170171 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
89 14.206154 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
93 13.5899878 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
95 57.426799 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
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Table 3. Evaluation Performance of the 63 Blurry Images using BD-CRAFT vs TextFuseNet 
(cont.) 

Blurry 
Images 

 Blurriness BD-CRAFT TextFuseNet 

Img_no. Threshold Precision Recall H-Mean Precision Recall H-Mean 

96 11.8740355 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
98 61.3983121 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
123 54.5686799 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
125 29.4063831 100.00% 100.00% 100.00% 62.50% 71.43% 66.67% 
131 65.3736027 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
134 45.5904438 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
138 72.2330041 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
142 73.576066 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
143 24.0986572 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
180 10.3440649 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
181 84.1780428 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
183 81.9879789 100.00% 50.00% 66.67% 100.00% 100.00% 100.00% 
184 26.0136719 100.00% 100.00% 100.00% 80.00% 100.00% 88.89% 
186 35.5071598 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
211 22.1367073 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
217 95.5176921 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
222 65.4059773 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
226 43.1260097 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
227 44.3401323 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
229 16.0993804 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
231 60.5148326 83.33% 100.00% 90.91% 80.00% 66.67% 72.73% 
232 17.4316837 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

 

To establish that the proposed method has an impact in improving the performance 
of the different scene text detection algorithms, those images which obtained better 
results among the 63 identified blurry images in BD-CRAFT compared to the results using 
the other algorithms such as SenseTime, TextFuseNet and TencentAILab are then selected 
and eventually used to calculate the average h-mean result of the said algorithm.  

An updated ranking of the top-performing algorithms would show an impressive 
ranking of this proposed algorithm when integrated into the original algorithm (see Table 
5). It can be observed that when BD-CRAFT is applied to other algorithms, their h-mean 
results were improved. When using TextFuseNet alone, the h-mean result is 93.11% but 
when BD-CRAFT is (TextFuseNet + BD-CRAFT) applied, it yields 93.55% h-mean. 
Furthermore, when BD-CRAFT (TextFuseNet + BD-CRAFT) is applied, the precision shows 
an impressive improvement of over 4% as evidenced by its 95.71% precision. 
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Table 4. Evaluation Performance of the 63 Blurry Images using BD-CRAFT vs TencentAILab 
Blurry Images  Blurriness BD-CRAFT TencentAIlab 

Img_no. Threshold Precision Recall H-Mean Precision Recall H-Mean 

1 12.8405571 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
4 16.4762852 100.00% 85.71% 92.31% 100.00% 87.50% 93.33% 
10 23.4311781 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
12 36.653517 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
15 28.9903253 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
16 16.1522402 100.00% 50.00% 66.67% 100.00% 100.00% 100.00% 
20 57.4975666 100.00% 100.00% 100.00% 85.71% 100.00% 92.31% 
21 81.7039225 100.00% 100.00% 100.00% 93.33% 93.33% 93.33% 
23 15.9194037 94.12% 100.00% 96.87% 100.00% 100.00% 100.00% 
25 7.97007126 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
26 35.1926793 100.00% 100.00% 100.00% 100.00% 84.62% 91.67% 
29 50.7909314 75.00% 60.00% 66.67% 83.33% 100.00% 90.91% 
34 16.1037522 45.45% 100.00% 62.50% 100.00% 100.00% 100.00% 
38 14.3117793 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
39 15.4544795 83.33% 100.00% 90.91% 100.00% 100.00% 100.00% 
44 27.4993814 100.00% 100.00% 100.00% 90.00% 100.00% 94.74% 
45 21.6460108 100.00% 93.33% 96.55% 100.00% 100.00% 100.00% 
48 17.6449657 100.00% 100.00% 100.00% 83.33% 100.00% 90.91% 
49 56.3667426 100.00% 83.33% 90.90% 90.91% 83.33% 86.96% 
52 99.1999698 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
54 39.2921302 100.00% 100.00% 100.00% 83.33% 83.33% 100.00% 
55 83.6990885 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
58 41.8884998 100.00% 77.78% 87.50% 88.89% 88.89% 88.89% 
59 97.4825748 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
61 61.5662565 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
62 64.4650431 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
63 66.767582 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
64 18.0964371 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
65 12.5359277 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
69 28.2970963 50.00% 100.00% 66.67% 100.00% 100.00% 100.00% 
73 78.597045 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
75 62.6589596 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
77 88.4263075 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
82 56.0501649 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
84 22.8809663 71.43% 83.33% 76.92% 100.00% 83.33% 90.91% 
85 68.5711141 100.00% 100.00% 100.00% 50.00% 100.00% 66.67% 
87 49.7199117 80.00% 100.00% 88.89% 100.00% 100.00% 100.00% 
88 81.8170171 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
89 14.206154 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
93 13.5899878 100.00% 100.00% 100.00% 50.00% 100.00% 66.67% 
95 57.426799 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
96 11.8740355 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
98 61.3983121 100.00% 100.00% 100.00% 77.78% 100.00% 87.5% 
123 54.5686799 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
125 29.4063831 100.00% 100.00% 100.00% 100.00% 71.43% 83.33% 
131 65.3736027 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
134 45.5904438 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
138 72.2330041 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
142 73.576066 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
143 24.0986572 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
180 10.3440649 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
181 84.1780428 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
183 81.9879789 100.00% 50.00% 66.67% 75.00% 75.00% 75.00% 
184 26.0136719 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
186 35.5071598 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
211 22.1367073 100.00% 100.00% 100.00% 66.67% 66.67% 66.67% 
217 95.5176921 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
222 65.4059773 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
226 43.1260097 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
227 44.3401323 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
229 16.0993804 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 
231 60.5148326 83.33% 100.00% 90.91% 100.00% 100.00% 100.00% 
232 17.4316837 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

 

  



 

1718 

 

Moreover, TencentAILab has an h-mean result of 93.05% and its detection performance 
was improved when BD-CRAFT (TencentAILab + BD-CRAFT) was employed. TencentAILab 
+ BD-CRAFT has yielded an impressive h-mean result of 94.77% which ranked second and 
outperformed the state-of-the-art SenseTime with 93.62%. In addition, both the precision 
and recall of TencentAILab were improved.  

 
Finally, the state-of-the-art algorithm SenseTime is also explored. When applying BD-

CRAFT (SenseTime + BD-CRAFT), it resulted in a very impressive 95.22% h-mean and showed 
a huge precision improvement of over 4% which made it to be the top-ranked algorithm.  
  

Table 5. Comparison of the State-of-the-art algorithms ranked by IoU h-mean 

Method Precision Recall H-Mean 

SenseTime + BD-CRAFT 96.79 % 94.65 % 95.22 % 

TencentAILab + BD-CRAFT 94.04% 96.46% 94.77% 
SenseTime (2016) 91.87% 95.45% 93.62% 
TextFuseNet + BD-CRAFT 95.71% 94.45% 93.55% 
BD-CRAFT 94.32% 92.44% 93.37% 
TextFuseNet (2020) 90.78% 95.58% 93.11% 
TencentAILab (2017) 94.79% 91.37% 93.05% 
VARCO (2020) 89.86% 93.63% 91.71% 
HIT (2020) 89.22% 93.85% 91.48% 
CRAFT (2018) 89.04% 93.93% 91.42% 

 

CONCLUSIONS AND RECOMMENDATIONS 

In this study, we improve three (3) state-of-the-art algorithms for text detection – 
SenseTime, TextFuseNet, and TencentAILab – by incorporating the BD-CRAFT, a variant of 
the CRAFT algorithm that involves preprocessing steps where images are automatically 
classified as blurry or non-blurry using a Laplacian operator, followed by applying the blind 
deconvolution deblurring technique. Each of the resulting algorithm variants shows 
significant improvement as evidenced by the increase not only in the overall h-mean but 
also in some of the precision and recall values. TextFuseNet + BD-CRAFT yields 93.55% h-
mean, while the precision is 95.71%, which is an impressive improvement of over 4%. 
Meanwhile, TencentAILab + BD-CRAFT showed an impressive h-mean result of 94.77% 
(which ranked second and had outperformed the state-of-the-art SenseTime’s 93.62%), 
with both the precision and recall improving also. Furthermore, SenseTime + BD-CRAFT 
ranked first with a very impressive 95.22% h-mean and showed a huge precision 
improvement of over 4%, which made it to be the top-ranked algorithm. Evidence shows 
that when BD-CRAFT is combined with other algorithms, their performances are improved, 
hence BD-CRAFT has a significant impact on the text detection performance of these 
algorithms. 
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As possibilities for further studies, it would be interesting to investigate the other state-
of-the-art algorithms for scene text detection that would benefit also from the discussed 
method.  It may also be good to investigate other preprocessing techniques that can be 
incorporated into text detection algorithms in general. 
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